Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Neurol ; 44(2): 168-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485127

ABSTRACT

Underserved and underrepresented populations have historically been excluded from neurological research. This lack of representation has implications for translation of research findings into clinical practice given the impact of social determinants of health on neurological disease risk, progression, and outcomes. Lack of inclusion in research is driven by individual-, investigator-, and study-level barriers as well as larger systemic injustices (e.g., structural racism, discriminatory practices). Although strategies to increase inclusion of underserved and underrepresented populations have been put forth, numerous questions remain about the most effective methodology. In this article, we highlight inclusivity patterns and gaps among the most common neurological conditions and propose best practices informed by our own experiences in engagement of local community organizations and collaboration efforts to increase underserved and underrepresented population participation in neurological research.


Subject(s)
Medically Underserved Area , Vulnerable Populations , Humans
2.
Neurobiol Aging ; 131: 124-131, 2023 11.
Article in English | MEDLINE | ID: mdl-37633118

ABSTRACT

Physical activity (PA) is linked to better cognitive and brain health, though its mechanisms are unknown. While brain iron is essential for normal function, levels increase with age and, when excessive, can cause detrimental neural effects. We examined how objectively measured PA relates to cerebral iron deposition and memory functioning in normal older adults. Sixty-eight cognitively unimpaired older adults from the UCSF Memory and Aging Center completed neuropsychological testing and brain magnetic resonance imaging, followed by 30-day Fitbit monitoring. Magnetic resonance imaging quantitative susceptibility mapping (QSM) quantified iron deposition. PA was operationalized as average daily steps. Linear regression models examined memory as a function of hippocampal QSM, PA, and their interaction. Higher bilateral hippocampal iron deposition correlated with worse memory but was not strongly related to PA. Covarying for demographics, PA moderated the relationship between bilateral hippocampal iron deposition and memory such that the negative effect of hippocampal QSM on memory performances was no longer significant above 9120 daily steps. PA may mitigate adverse iron-related pathways for memory health.


Subject(s)
Brain , Exercise , Brain/metabolism , Hippocampus/pathology , Magnetic Resonance Imaging/methods , Iron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...