Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Viruses ; 16(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38543757

ABSTRACT

The surface spike (S) glycoprotein mediates cell entry of SARS-CoV-2 into the host through fusion at the plasma membrane or endocytosis. Omicron lineages/sublineages have acquired extensive mutations in S to gain transmissibility advantages and altered antigenicity. The fusogenicity, antigenicity, and evasion of Omicron subvariants have been extensively investigated at unprecedented speed to align with the mutation rate of S. Cells that overexpress receptors/cofactors are mostly used as hosts to amplify infection sensitivity to tested variants. However, systematic cell entry comparisons of most prior dominant Omicron subvariants using human lung epithelium cells are yet to be well-studied. Here, with human bronchial epithelium BEAS-2B cells as the host, we compared single-round virus-to-cell entry and cell-to-cell fusion of Omicron BA.1, BA.5, BQ.1.1, CH.1.1, XBB.1.5, and XBB.1.16 based upon split NanoLuc fusion readout assays and the S-pseudotyped lentivirus system. Virus-to-cell entry of tested S variants exhibited cell-type dependence. The parental Omicron BA.1 required more time to develop full entry to HEK293T-ACE2-TMPRSS2 than BEAS-2B cells. Compared to unchanged P681, S-cleavage constructs of P681H/R did not have any noticeable advantages in cell entry. Omicron BA.1 and its descendants entered BEAS-2B cells more efficiently than D614G, and it was slightly less or comparable to that of Delta. Serine protease-pretreated Omicron subvariants enhanced virus-to-cell entry in a dose-dependent manner, suggesting fusion at the plasma membrane persists as a productive cell entry route. Spike-mediated cell-to-cell fusion and total S1/S2 processing of Omicron descendants were similar. Our results indicate no obvious entry or fusion advantages of recent Omicron descendants over preceding variants since Delta, thus supporting immune evasion conferred by antigenicity shifts due to altered S sequences as probably the primary viral fitness driver.


Subject(s)
COVID-19 , Humans , HEK293 Cells , SARS-CoV-2/genetics , Virus Internalization , Epithelium , Spike Glycoprotein, Coronavirus/genetics
2.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L419-L430, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38349126

ABSTRACT

During the progression of pleural fibrosis, pleural mesothelial cells (PMCs) undergo a phenotype switching process known as mesothelial-mesenchymal transition (MesoMT). During MesoMT, transformed PMCs become myofibroblasts that produce increased extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1) that is critical to develop fibrosis. Here, we studied the mechanism that regulates FN1 expression in myofibroblasts derived from human pleural mesothelial cells (HPMCs). We found that myocardin (Myocd), a transcriptional coactivator of serum response factor (SRF) and a master regulator of smooth muscle and cardiac muscle differentiation, strongly controls FN1 gene expression. Myocd gene silencing markedly inhibited FN1 expression. FN1 promoter analysis revealed that deletion of the Smad3-binding element diminished FN1 promoter activity, whereas deletion of the putative SRF-binding element increased FN1 promoter activity. Smad3 gene silencing decreased FN1 expression, whereas SRF gene silencing increased FN1 expression. Moreover, SRF competes with Smad3 for binding to Myocd. These results indicate that Myocd activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression in HPMCs. In HPMCs, TGF-ß induced Smad3 nuclear localization, and the proximity ligation signal between Myocd and Smad3 was markedly increased after TGF-ß stimulation at nucleus, suggesting that TGF-ß facilitates nuclear translocation of Smad3 and interaction between Smad3 and Myocd. Moreover, Myocd and Smad3 were coimmunoprecipitated and isolated Myocd and Smad3 proteins directly bound each other. Chromatin immunoprecipitation assays revealed that Myocd interacts with the FN1 promoter at the Smad3-binding consensus sequence. The results indicate that Myocd regulates FN1 gene activation through interaction and activation of the Smad3 transcription factor.NEW & NOTEWORTHY During phenotype switching from mesothelial to mesenchymal, pleural mesothelial cells (PMCs) produce extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1), critical components in the development of fibrosis. Here, we found that myocardin, a transcriptional coactivator of serum response factor (SRF), strongly activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression. This study provides insights about the regulation of FN1 that could lead to the development of novel interventional approaches to prevent pleural fibrosis.


Subject(s)
Fibronectins , Nuclear Proteins , Serum Response Factor , Trans-Activators , Humans , Serum Response Factor/genetics , Serum Response Factor/metabolism , Fibronectins/genetics , Transcription Factors , Transforming Growth Factor beta/metabolism , Collagen , Fibrosis
3.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L353-L366, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38252666

ABSTRACT

During the development of pleural fibrosis, pleural mesothelial cells (PMCs) undergo phenotypic switching from differentiated mesothelial cells to mesenchymal cells (MesoMT). Here, we investigated how external stimuli such as TGF-ß induce HPMC-derived myofibroblast differentiation to facilitate the development of pleural fibrosis. TGF-ß significantly increased di-phosphorylation but not mono-phosphorylation of myosin II regulatory light chain (RLC) in HPMCs. An increase in RLC di-phosphorylation was also found at the pleural layer of our carbon black bleomycin (CBB) pleural fibrosis mouse model, where it showed filamentous localization that coincided with alpha smooth muscle actin (αSMA) in the cells in the pleura. Among the protein kinases that can phosphorylate myosin II RLC, ZIPK (zipper-interacting kinase) protein expression was significantly augmented after TGF-ß stimulation. Furthermore, ZIPK gene silencing attenuated RLC di-phosphorylation, suggesting that ZIPK is responsible for di-phosphorylation of myosin II in HPMCs. Although TGF-ß significantly increased the expression of ZIP kinase protein, the change in ZIP kinase mRNA was marginal, suggesting a posttranscriptional mechanism for the regulation of ZIP kinase expression by TGF-ß. ZIPK gene knockdown (KD) also significantly reduced TGF-ß-induced upregulation of αSMA expression. This finding suggests that siZIPK attenuates myofibroblast differentiation of HPMCs. siZIPK diminished TGF-ß-induced contractility of HPMCs consistent with siZIPK-induced decrease in the di-phosphorylation of myosin II RLC. The present results implicate ZIPK in the regulation of the contractility of HPMC-derived myofibroblasts, phenotype switching, and myofibroblast differentiation of HPMCs.NEW & NOTEWORTHY Here, we highlight that ZIP kinase is responsible for di-phosphorylation of myosin light chain, which facilitates stress fiber formation and actomyosin-based cell contraction during mesothelial to mesenchymal transition in human pleural mesothelial cells. This transition has a significant impact on tissue remodeling and subsequent stiffness of the pleura. This study provides insight into a new therapeutic strategy for the treatment of pleural fibrosis.


Subject(s)
Myofibroblasts , Pleural Diseases , Mice , Animals , Humans , Death-Associated Protein Kinases/genetics , Death-Associated Protein Kinases/metabolism , Myofibroblasts/metabolism , Phosphorylation , Myosin Light Chains/metabolism , Pleural Diseases/metabolism , Myosin Type II/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Fibrosis
4.
Am J Respir Cell Mol Biol ; 70(1): 50-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37607215

ABSTRACT

Progressive lung scarring because of persistent pleural organization often results in pleural fibrosis (PF). This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to loculation. In PF, pleural mesothelial cells undergo mesomesenchymal transition (MesoMT) to become profibrotic, characterized by increased expression of α-smooth muscle actin and matrix proteins, including collagen-1. In our previous study, we showed that blocking PI3K/Akt signaling inhibits MesoMT induction in human pleural mesothelial cells (HPMCs) (1). However, the downstream signaling pathways leading to MesoMT induction remain obscure. Here, we investigated the role of mTOR complexes (mTORC1/2) in MesoMT induction. Our studies show that activation of the downstream mediator mTORC1/2 complex is, likewise, a critical component of MesoMT. Specific targeting of mTORC1/2 complex using pharmacological inhibitors such as INK128 and AZD8055 significantly inhibited transforming growth factor ß (TGF-ß)-induced MesoMT markers in HPMCs. We further identified the mTORC2/Rictor complex as the principal contributor to MesoMT progression induced by TGF-ß. Knockdown of Rictor, but not Raptor, attenuated TGF-ß-induced MesoMT in these cells. In these studies, we further show that concomitant activation of the SGK1/NDRG1 signaling cascade is essential for inducing MesoMT. Targeting SGK1 and NDRG1 with siRNA and small molecular inhibitors attenuated TGF-ß-induced MesoMT in HPMCs. Additionally, preclinical studies in our Streptococcus pneumoniae-mediated mouse model of PF showed that inhibition of mTORC1/2 with INK128 significantly attenuated the progression of PF in subacute and chronic injury. In conclusion, our studies demonstrate that mTORC2/Rictor-mediated activation of SGK1/NDRG1 is critical for MesoMT induction and that targeting this pathway could inhibit or even reverse the progression of MesoMT and PF.


Subject(s)
Pleural Diseases , Pleurisy , Animals , Mice , Humans , Phosphatidylinositol 3-Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2 , Transcription Factors , Transforming Growth Factor beta/metabolism , Mechanistic Target of Rapamycin Complex 1 , Fibrosis
5.
Am J Pathol ; 194(4): 599-611, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37838011

ABSTRACT

The pathology of atherosclerosis, a leading cause of mortality in patients with cardiovascular disease, involves inflammatory phenotypic changes in vascular endothelial cells. This study explored the role of the dedicator of cytokinesis (DOCK)-2 protein in atherosclerosis. Mice with deficiencies in low-density lipoprotein receptor and Dock2 (Ldlr-/-Dock2-/-) and controls (Ldlr-/-) were fed a high-fat diet (HFD) to induce atherosclerosis. In controls, Dock2 was increased in atherosclerotic lesions, with increased intercellular adhesion molecule (Icam)-1 and vascular cell adhesion molecule (Vcam)-1, after HFD for 4 weeks. Ldlr-/-Dock2-/- mice exhibited significantly decreased oil red O staining in both aortic roots and aortas compared to that in controls after HFD for 12 weeks. In control mice and in humans, Dock2 was highly expressed in the ECs of atherosclerotic lesions. Dock2 deficiency was associated with attenuation of Icam-1, Vcam-1, and monocyte chemoattractant protein (Mcp)-1 in the aortic roots of mice fed HFD. Findings in human vascular ECs in vitro suggested that DOCK2 was required in TNF-α-mediated expression of ICAM-1/VCAM-1/MCP-1. DOCK2 knockdown was associated with attenuated NF-κB phosphorylation with TNF-α, partially accounting for DOCK2-mediated vascular inflammation. With DOCK2 knockdown in human vascular ECs, TNF-α-mediated VCAM-1 promoter activity was inhibited. The findings from this study suggest the novel concept that DOCK2 promotes the pathogenesis of atherosclerosis by modulating inflammation in vascular ECs.


Subject(s)
Atherosclerosis , Endothelial Cells , Humans , Animals , Mice , Endothelial Cells/metabolism , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Atherosclerosis/pathology , NF-kappa B/metabolism , Inflammation/pathology , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism
6.
Int J Mol Sci ; 24(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686037

ABSTRACT

Bromodomain and extra-terminal domain (BET) proteins are epigenetic modulators that regulate gene transcription through interacting with acetylated lysine residues of histone proteins. BET proteins have multiple roles in regulating key cellular functions such as cell proliferation, differentiation, inflammation, oxidative and redox balance, and immune responses. As a result, BET proteins have been found to be actively involved in a broad range of human lung diseases including acute lung inflammation, asthma, pulmonary arterial hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). Due to the identification of specific small molecular inhibitors of BET proteins, targeting BET in these lung diseases has become an area of increasing interest. Emerging evidence has demonstrated the beneficial effects of BET inhibitors in preclinical models of various human lung diseases. This is, in general, largely related to the ability of BET proteins to bind to promoters of genes that are critical for inflammation, differentiation, and beyond. By modulating these critical genes, BET proteins are integrated into the pathogenesis of disease progression. The intrinsic histone acetyltransferase activity of bromodomain-containing protein 4 (BRD4) is of particular interest, seems to act independently of its bromodomain binding activity, and has implication in some contexts. In this review, we provide a brief overview of the research on BET proteins with a focus on BRD4 in several major human lung diseases, the underlying molecular mechanisms, as well as findings of targeting BET proteins using pharmaceutical inhibitors in different lung diseases preclinically.


Subject(s)
Nuclear Proteins , Pulmonary Disease, Chronic Obstructive , Humans , Transcription Factors , Genes, cdc , Inflammation , Cell Cycle Proteins
7.
Am J Physiol Cell Physiol ; 325(5): C1190-C1200, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37661917

ABSTRACT

Interstitial lung diseases can result in poor patient outcomes, especially in idiopathic pulmonary fibrosis (IPF), a severe interstitial lung disease with unknown causes. The lack of treatment options requires further understanding of the pathological process/mediators. Membrane-associated RING-CH 8 (MARCH8) has been implicated in immune function regulation and inflammation, however, its role in the development of pulmonary fibrosis and particularly the fibroblast to myofibroblast transition (FMT) remains a gap in existing knowledge. In this study, we demonstrated decreased MARCH8 expression in patients with IPF compared with non-PF controls and in bleomycin-induced PF. TGF-ß dose- and time-dependently decreased MARCH8 expression in normal and IPF human lung fibroblast (HLFs), along with induction of FMT markers α-SMA, collagen type I (Col-1), and fibronectin (FN). Interestingly, overexpression of MARCH8 significantly suppressed TGF-ß-induced expression of α-SMA, Col-1, and FN. By contrast, the knockdown of MARCH8 using siRNA upregulated basal expression of α-SMA/Col-1/FN. Moreover, MARCH8 knockdown enhanced TGF-ß-induced FMT marker expression. These data clearly show that MARCH8 is a critical "brake" for FMT and potentially affects PF. We further found that TGF-ß suppressed MARCH8 mRNA expression and the proteasome inhibitor MG132 failed to block MARCH8 decrease induced by TGF-ß. Conversely, TGF-ß decreases mRNA levels of MARCH8 in a dose- and time-dependent manner, suggesting the transcriptional regulation of MARCH8 by TGF-ß. Mechanistically, MARCH8 overexpression suppressed TGF-ß-induced Smad2/3 phosphorylation, which may account for the observed effects. Taken together, this study demonstrated an unrecognized role of MARCH8 in negatively regulating FMT and profibrogenic responses relevant to interstitial lung diseases.NEW & NOTEWORTHY MARCH8 is an important modulator of inflammation, immunity, and other cellular processes. We found that MARCH8 expression is downregulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and experimental models of pulmonary fibrosis. Furthermore, TGF-ß1 decreases MARCH8 transcriptionally in human lung fibroblasts (HLFs). MARCH8 overexpression blunts TGF-ß1-induced fibroblast to myofibroblast transition while knockdown of MARCH8 drives this profibrotic change in HLFs. The findings support further exploration of MARCH8 as a novel target in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Myofibroblasts , Down-Regulation , Lung/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Fibroblasts/metabolism , Lung Diseases, Interstitial/metabolism , Transforming Growth Factor beta/metabolism , Bleomycin/pharmacology , Inflammation/metabolism , RNA, Messenger/metabolism
8.
Front Immunol ; 13: 1011922, 2022.
Article in English | MEDLINE | ID: mdl-36275778

ABSTRACT

Respiratory viruses pose a continuing and substantive threat to human health globally. Host innate and adaptive immune responses are the critical antiviral defense mechanisms to control viral replication and spread. The present study is designed to determine the role of transcription factor Runx3 in the host immune response to influenza A virus (IAV) infection. As Runx3 is required for embryonic development, we generated an inducible Runx3 global knockout (KO) mouse model and found that Runx3 KO in adult C57BL/6 mice minimally affected thymic function under normal conditions and survival was at least 250 days post Runx3 deletion. We applied the mouse model to IAV infection and found that Runx3 KO resulted in a huge reduction (>85%) in numbers of total and antigen-specific pulmonary CD8+ cytotoxic T cells during IAV infection, while it had a minor effect on pulmonary generation of CD4+ T cells. To our surprise, this general KO of Runx3 did not significantly alter viral clearance and animal survival following IAV infection. Interestingly, we found that Runx3 KO significantly increased the numbers of pulmonary innate immune cells such as macrophages and neutrophils and the production of pro-inflammatory cytokines during IAV infection. We further found that Runx3 was strongly detected in CCR2+ immune cells in IAV-infected mouse lungs and was induced in activated macrophages and dendritic cells (DCs). As pulmonary CD8+ cytotoxic T cells play a central role in the clearance of IAV, our findings suggest that Runx3 KO may enhance host innate immunity to compensate for the loss of pulmonary CD8+ cytotoxic T cells during IAV infection.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Antiviral Agents , CD8-Positive T-Lymphocytes , Core Binding Factor Alpha 3 Subunit/genetics , Cytokines , Disease Models, Animal , Lung , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors
9.
Am J Physiol Cell Physiol ; 323(1): C133-C144, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35584329

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is the most common chronic interstitial lung disease and is characterized by progressive scarring of the lung. Transforming growth factor-ß (TGF-ß) signaling plays an essential role in IPF and drives fibroblast to myofibroblast transition (FMT). Dedicator of cytokinesis 2 (DOCK2) is known to regulate diverse immune functions by activating Rac and has been recently implicated in pleural fibrosis. We now report a novel role of DOCK2 in pulmonary fibrosis development by mediating FMT. In primary normal and IPF human lung fibroblasts (HLFs), TGF-ß induced DOCK2 expression concurrent with FMT markers, smooth muscle α-actin (α-SMA), collagen-1, and fibronectin. Knockdown of DOCK2 significantly attenuated TGF-ß-induced expression of these FMT markers. In addition, we found that the upregulation of DOCK2 by TGF-ß is dependent on both Smad3 and ERK pathways as their respective inhibitors blocked TGF-ß-mediated induction. TGF-ß also stabilized DOCK2 protein, which contributes to increased DOCK2 expression. In addition, DOCK2 was also dramatically induced in the lungs of patients with IPF and in bleomycin, and TGF-ß induced pulmonary fibrosis in C57BL/6 mice. Furthermore, increased lung DOCK2 expression colocalized with the FMT marker α-SMA in the bleomycin-induced pulmonary fibrosis model, implicating DOCK2 in the regulation of lung fibroblast phenotypic changes. Importantly, DOCK2 deficiency also attenuated bleomycin-induced pulmonary fibrosis and α-SMA expression. Taken together, our study demonstrates a novel role of DOCK2 in pulmonary fibrosis by modulating FMT and suggests that targeting DOCK2 may present a potential therapeutic strategy for the prevention or treatment of IPF.


Subject(s)
Fibroblasts , GTPase-Activating Proteins , Guanine Nucleotide Exchange Factors , Idiopathic Pulmonary Fibrosis , Myofibroblasts , Actins/genetics , Actins/metabolism , Animals , Bleomycin/toxicity , Cells, Cultured , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/physiopathology , Lung/metabolism , Lung/pathology , Lung/physiopathology , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Myofibroblasts/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
10.
Sci Rep ; 12(1): 3053, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35197539

ABSTRACT

Programmed death ligand-1 (PD-L1) is an immune checkpoint protein that has been linked with idiopathic pulmonary fibrosis (IPF) and fibroblast to myofibroblast transition (FMT). However, it remains largely unclear how PD-L1 mediates this process. We found significantly increased PD-L1 in the lungs of idiopathic pulmonary fibrosis patients and mice with pulmonary fibrosis induced by bleomycin and TGF-ß. In primary human lung fibroblasts (HLFs), TGF-ß induced PD-L1 expression that is dependent on both Smad3 and p38 pathways. PD-L1 knockdown using siRNA significantly attenuated TGF-ß-induced expression of myofibroblast markers α-SMA, collagen-1, and fibronectin in normal and IPF HLFs. Further, we found that PD-L1 interacts with Smad3, and TGF-ß induces their interaction. Interestingly, PD-L1 knockdown reduced α-SMA reporter activity induced by TGF-ß in HLFs, suggesting that PD-L1 might act as a co-factor of Smad3 to promote target gene expression. TGF-ß treatment also phosphorylates GSK3ß and upregulates ß-catenin protein levels. Inhibiting ß-catenin signaling with the pharmaceutical inhibitor ICG001 significantly attenuated TGF-ß-induced FMT. PD-L1 knockdown also attenuated TGF-ß-induced GSK3ß phosphorylation/inhibition and ß-catenin upregulation, implicating GSK3ß/ß-catenin signaling in PD-L1-mediated FMT. Collectively, our findings demonstrate that fibroblast PD-L1 may promote pulmonary fibrosis through both Smad3 and ß-catenin signaling and may represent a novel interventional target for IPF.


Subject(s)
B7-H1 Antigen/metabolism , Smad3 Protein/metabolism , beta Catenin/metabolism , Aged , Animals , B7-H1 Antigen/genetics , Bleomycin/toxicity , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Mice, Inbred C57BL , Middle Aged , Myofibroblasts/metabolism , Signal Transduction , Transforming Growth Factor beta/pharmacology , Up-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism
11.
Cells ; 11(3)2022 02 06.
Article in English | MEDLINE | ID: mdl-35159372

ABSTRACT

Necroptosis, a form of programmed lytic cell death, has emerged as a driving factor in the pathogenesis of acute lung injury (ALI). As ALI is often associated with a cytokine storm, we determined whether pro-inflammatory cytokines modulate the susceptibility of lung cells to necroptosis and which mediators dominate to control necroptosis. In this study, we pretreated/primed mouse primary lung epithelial and endothelial cells with various inflammatory mediators and assessed cell type-dependent responses to different necroptosis inducers and their underlying mechanisms. We found that interferon-γ (IFNγ) as low as 1 ng/mL preferentially promoted necroptosis and accelerated the release of damage-associated molecular patterns from primary alveolar and airway epithelial cells but not lung microvascular endothelial cells. Type-I IFNα was about fifty-fold less effective than IFNγ. Conversely, TNFα or agonists of Toll-like receptor-3 (TLR3), TLR4, TLR7 and TLR9 had a minor effect. The enhanced necroptosis in IFNγ-activated lung epithelial cells was dependent on IFNγ signaling and receptor-interacting protein kinase-3. We further showed that necroptosis effector mixed lineage kinase domain-like protein (MLKL) was predominantly induced by IFNγ, contributing to the enhanced necroptosis in lung epithelial cells. Collectively, our findings indicate that IFNγ is a potent enhancer of lung epithelial cell susceptibility to necroptosis.


Subject(s)
Interferon-gamma , Necroptosis , Animals , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Lung/pathology , Mice , Protein Kinases/metabolism
12.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35163509

ABSTRACT

Pleural injury and subsequent loculation is characterized by acute injury, sustained inflammation and, when severe, pathologic tissue reorganization. While fibrin deposition is a normal part of the injury response, disordered fibrin turnover can promote pleural loculation and, when unresolved, fibrosis of the affected area. Within this review, we present a brief discussion of the current IPFT therapies, including scuPA, for the treatment of pathologic fibrin deposition and empyema. We also discuss endogenously expressed PAI-1 and how it may affect the efficacy of IPFT therapies. We further delineate the role of pleural mesothelial cells in the progression of pleural injury and subsequent pleural remodeling resulting from matrix deposition. We also describe how pleural mesothelial cells promote pleural fibrosis as myofibroblasts via mesomesenchymal transition. Finally, we discuss novel therapeutic targets which focus on blocking and/or reversing the myofibroblast differentiation of pleural mesothelial cells for the treatment of pleural fibrosis.


Subject(s)
Pleura/drug effects , Pleura/injuries , Urokinase-Type Plasminogen Activator/pharmacology , Animals , Disease Progression , Drug Delivery Systems , Fibrosis , Gene Expression Regulation/drug effects , Humans , Plasminogen Activator Inhibitor 1/metabolism , Pleura/metabolism , Pleura/pathology , Recombinant Proteins/pharmacology
13.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L348-L364, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35018804

ABSTRACT

Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, how these transformed mesothelial cells contribute to lung fibrosis remains unclear. Here, we investigated the mechanism of contractile myofibroblast differentiation of PMCs. Transforming growth factor-ß (TGF-ß) induced marked upregulation of calponin 1 expression, which was correlated with notable cytoskeletal rearrangement in human PMCs (HPMCs) to produce stress fibers. Downregulation of calponin 1 expression reduced stress fiber formation. Interestingly, induced stress fibers predominantly contain α-smooth muscle actin (αSMA) associated with calponin 1 but not ß-actin. Calponin 1-associated stress fibers also contained myosin II and α-actinin. Furthermore, focal adhesions were aligned with the produced stress fibers. These results suggest that calponin 1 facilitates formation of stress fibers that resemble contractile myofibrils. Supporting this notion, TGF-ß significantly increased the contractile activity of HPMCs, an effect that was abolished by downregulation of calponin 1 expression. We infer that differentiation of HPMCs to contractile myofibroblasts facilitates stiffness of scar tissue in pleura to promote pleural fibrosis (PF) and that upregulation of calponin 1 plays a central role in this process.


Subject(s)
Myofibroblasts , Pleura , Calcium-Binding Proteins , Cell Differentiation , Cells, Cultured , Fibrosis , Humans , Microfilament Proteins , Myofibroblasts/metabolism , Pleura/pathology , Transforming Growth Factor beta/pharmacology , Calponins
14.
Am J Respir Cell Mol Biol ; 66(2): 171-182, 2022 02.
Article in English | MEDLINE | ID: mdl-34710342

ABSTRACT

Mesothelial to mesenchymal transition (MesoMT) is one of the crucial mechanisms underlying pleural fibrosis, which results in restrictive lung disease. DOCK2 (dedicator of cytokinesis 2) plays important roles in immune functions; however, its role in pleural fibrosis, particularly MesoMT, remains unknown. We found that amounts of DOCK2 and the MesoMT marker α-SMA (α-smooth muscle actin) were significantly elevated and colocalized in the thickened pleura of patients with nonspecific pleuritis, suggesting the involvement of DOCK2 in the pathogenesis of MesoMT and pleural fibrosis. Likewise, data from three different pleural fibrosis models (TGF-ß [transforming growth factor-ß], carbon black/bleomycin, and streptococcal empyema) consistently demonstrated DOCK2 upregulation and its colocalization with α-SMA in the pleura. In addition, induced DOCK2 colocalized with the mesothelial marker calretinin, implicating DOCK2 in the regulation of MesoMT. Our in vivo data also showed that DOCK2-knockout mice were protected from Streptococcus pneumoniae-induced pleural fibrosis, impaired lung compliance, and collagen deposition. To determine the involvement of DOCK2 in MesoMT, we treated primary human pleural mesothelial cells with the potent MesoMT inducer TGF-ß. TGF-ß significantly induced DOCK2 expression in a time-dependent manner, together with α-SMA, collagen 1, and fibronectin. Furthermore, DOCK2 knockdown significantly attenuated TGF-ß-induced α-SMA, collagen 1, and fibronectin expression, suggesting the importance of DOCK2 in TGF-ß-induced MesoMT. DOCK2 knockdown also inhibited TGF-ß-induced Snail upregulation, which may account for its role in regulating MesoMT. Taken together, the current study provides evidence that DOCK2 contributes to the pathogenesis of pleural fibrosis by mediating MesoMT and deposition of neomatrix and may represent a novel target for its prevention or treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Epithelium/pathology , Fibrosis/pathology , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Pleura/pathology , Pleurisy/pathology , Transforming Growth Factor beta/metabolism , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Disease Models, Animal , Epithelium/metabolism , Fibrosis/chemically induced , Fibrosis/metabolism , GTPase-Activating Proteins/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice , Mice, Inbred C57BL , Pleura/metabolism , Pleurisy/chemically induced , Pleurisy/metabolism , Signal Transduction , Transforming Growth Factor beta/genetics
15.
Am J Pathol ; 192(2): 226-238, 2022 02.
Article in English | MEDLINE | ID: mdl-34767813

ABSTRACT

Obesity is a major risk factor for lung disease development. However, little is known about the impact of chronic high-fat and high-fructose (HFHF) diet-induced obesity on lung inflammation and subsequent pulmonary fibrosis. Herein we hypothesized that dedicator of cytokinesis 2 (DOCK2) promotes a proinflammatory phenotype of lung fibroblasts (LFs) to elicit lung injury and fibrosis in chronic HFHF diet-induced obesity. An HFHF diet for 20 weeks induced lung inflammation and profibrotic changes in wild-type C57BL/6 mice. CD68 and monocyte chemoattractant protein-1 (MCP-1) expression were notably increased in the lungs of wild-type mice fed an HFHF diet. An HFHF diet further increased lung DOCK2 expression that co-localized with fibroblast-specific protein 1, suggesting a role of DOCK2 in regulating proinflammatory phenotype of LFs. Importantly, DOCK2 knockout protected mice from lung inflammation and fibrosis induced by a HFHF diet. In primary human LFs, tumor necrosis factor-α (TNF-α) and IL-1ß induced DOCK2 expression concurrent with MCP-1, IL-6, and matrix metallopeptidase 2. DOCK2 knockdown suppressed TNF-α-induced expression of these molecules and activation of phosphatidylinositol 3-kinase/AKT and NF-κB signaling pathways, suggesting a mechanism of DOCK2-mediated proinflammatory and profibrotic changes in human LFs. Taken together, these findings reveal a previously unrecognized role of DOCK2 in regulating proinflammatory phenotype of LFs, potentiation of lung inflammation, and pulmonary fibrosis in chronic HFHF diet-caused obesity.


Subject(s)
Diet, High-Fat/adverse effects , Fructose/adverse effects , GTPase-Activating Proteins/deficiency , Guanine Nucleotide Exchange Factors/deficiency , Lung Injury/metabolism , Lung/metabolism , Obesity/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Chronic Disease , Cytokines/genetics , Cytokines/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fructose/pharmacology , GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Lung/pathology , Lung Injury/chemically induced , Lung Injury/genetics , Lung Injury/pathology , Mice , Mice, Knockout , Obesity/chemically induced , Obesity/genetics , Obesity/pathology , Signal Transduction
16.
Sci Rep ; 11(1): 21210, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707211

ABSTRACT

Pleural fibrosis (PF) is a chronic and progressive lung disease which affects approximately 30,000 people per year in the United States. Injury and sustained inflammation of the pleural space can result in PF, restricting lung expansion and impairing oxygen exchange. During the progression of pleural injury, normal pleural mesothelial cells (PMCs) undergo a transition, termed mesothelial mesenchymal transition (MesoMT). While multiple components of the fibrinolytic pathway have been investigated in pleural remodeling and PF, the role of the urokinase type plasminogen activator receptor (uPAR) is unknown. We found that uPAR is robustly expressed by pleural mesothelial cells in PF. Downregulation of uPAR by siRNA blocked TGF-ß mediated MesoMT. TGF-ß was also found to significantly induce uPA expression in PMCs undergoing MesoMT. Like uPAR, uPA downregulation blocked TGF-ß mediated MesoMT. Further, uPAR is critical for uPA mediated MesoMT. LRP1 downregulation likewise blunted TGF-ß mediated MesoMT. These findings are consistent with in vivo analyses, which showed that uPAR knockout mice were protected from S. pneumoniae-mediated decrements in lung function and restriction. Histological assessments of pleural fibrosis including pleural thickening and α-SMA expression were likewise reduced in uPAR knockout mice compared to WT mice. These studies strongly support the concept that uPAR targeting strategies could be beneficial for the treatment of PF.


Subject(s)
Epithelial-Mesenchymal Transition , Pneumonia, Bacterial/metabolism , Receptors, Urokinase Plasminogen Activator/metabolism , Streptococcal Infections/metabolism , Transforming Growth Factor beta/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Actins/metabolism , Animals , Cells, Cultured , Epithelium/metabolism , Epithelium/pathology , Fibrosis , Humans , Mice , Mice, Inbred C57BL , Pleura/metabolism , Pleura/pathology , Pneumonia, Bacterial/pathology , Streptococcal Infections/pathology , Urokinase-Type Plasminogen Activator/genetics
17.
Int J Mol Sci ; 22(3)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535429

ABSTRACT

Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.


Subject(s)
Lung Injury/metabolism , Lung/pathology , Pleura/pathology , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Acute Disease , Animals , Biomarkers/metabolism , Blood Coagulation/physiology , Epithelium/metabolism , Fibrin/metabolism , Fibrinolysis , Humans , Inflammation , Pleural Effusion/metabolism , Thrombolytic Therapy
18.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Article in English | MEDLINE | ID: mdl-33600743

ABSTRACT

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Subject(s)
Endothelial Protein C Receptor/deficiency , Lung/metabolism , Pleura/metabolism , Pleural Effusion/metabolism , Pleurisy/metabolism , Pneumonia, Pneumococcal/metabolism , Streptococcus pneumoniae/pathogenicity , Animals , Bacterial Load , Cells, Cultured , Disease Models, Animal , Endothelial Protein C Receptor/genetics , Female , Fibrosis , Host-Pathogen Interactions , Humans , Lung/microbiology , Lung/pathology , Lung/physiopathology , Macrophages/metabolism , Macrophages/microbiology , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/microbiology , Pleura/microbiology , Pleura/pathology , Pleural Effusion/microbiology , Pleural Effusion/pathology , Pleural Effusion/physiopathology , Pleurisy/microbiology , Pleurisy/pathology , Pleurisy/physiopathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Pneumonia, Pneumococcal/physiopathology
19.
Am J Respir Cell Mol Biol ; 64(4): 492-503, 2021 04.
Article in English | MEDLINE | ID: mdl-33513310

ABSTRACT

Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3ß, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-ß- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.


Subject(s)
Epithelial-Mesenchymal Transition , NADPH Oxidase 1/metabolism , Pleura/enzymology , Pleurisy/enzymology , Pneumonia, Pneumococcal/enzymology , Reactive Oxygen Species/metabolism , Streptococcus pneumoniae/pathogenicity , Animals , Cells, Cultured , Disease Models, Animal , Factor Xa/metabolism , Fibrosis , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 1/deficiency , NADPH Oxidase 1/genetics , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Pleura/microbiology , Pleura/pathology , Pleurisy/microbiology , Pleurisy/pathology , Pleurisy/physiopathology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Signal Transduction , Thrombin/metabolism
20.
Sci Rep ; 9(1): 18925, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31831767

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of 3 years after diagnosis. Although the etiology of IPF is unknown, it is characterized by extensive alveolar epithelial cell apoptosis and proliferation of myofibroblasts in the lungs. While the origins of these myofibroblast appear to be diverse, fibroblast differentiation contributes to expansion of myofibroblasts and to disease progression. We found that agents that contribute to neomatrix formation and remodeling in pulmonary fibrosis (PF); TGF-ß, Factor Xa, thrombin, plasmin and uPA all induced fibroblast/myofibroblast differentiation. These same mediators enhanced GSK-3ß activation via phosphorylation of tyrosine-216 (p-Y216). Inhibition of GSK-3ß signaling with the novel inhibitor 9-ING-41 blocked the induction of myofibroblast markers; α-SMA and Col-1 and reduced morphological changes of myofibroblast differentiation. In in vivo studies, the progression of TGF-ß and bleomycin mediated PF was significantly attenuated by 9-ING-41 administered at 7 and 14 days respectively after the establishment of injury. Specifically, 9-ING-41 treatment significantly improved lung function (compliance and lung volumes; p < 0.05) of TGF-ß adenovirus treated mice compared to controls. Similar results were found in mice with bleomycin-induced PF. These studies clearly show that activation of the GSK-3ß signaling pathway is critical for the induction of myofibroblast differentiation in lung fibroblasts ex vivo and pulmonary fibrosis in vivo. The results offer a strong premise supporting the continued investigation of the GSK-3ß signaling pathway in the control of fibroblast-myofibroblast differentiation and fibrosing lung injury. These data provide a strong rationale for extension of clinical trials of 9-ING-41 to patients with IPF.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Indoles/pharmacology , Lung/enzymology , Maleimides/pharmacology , Pulmonary Fibrosis/drug therapy , Signal Transduction/drug effects , Animals , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Lung/pathology , Lung/physiopathology , Mice , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...