Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 76(1): 68-77, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11739672

ABSTRACT

The Sendai virus P-L polymerase complex binds the NP-encapsidated nucleocapsid (NC) template through a P-NP interaction. To identify P amino acids responsible for binding we performed site-directed mutagenesis on the C-terminal 88 amino acids in the NC binding domain. The mutant P proteins expressed from plasmids were assayed for viral RNA synthesis and for various protein-protein interactions. All the mutants formed P oligomers and bound to L protein. While two mutants, JT3 and JT8, retained all P functions at or near the levels of wild-type (wt) P, three others--JT4, JT6, and JT9--were completely defective for both transcription and genome replication in vitro. Each of the inactive mutants retained significant NC binding but had a different spectrum of other binding interactions and activities, suggesting that the NC binding domain also affects the catalytic function of the polymerase. NC binding was inhibited by combinations of the inactive mutations. The remaining P mutants were active in transcription but defective in various aspects of genome replication. Some P mutants were defective in NP(0) binding and abolished the reconstitution of replication from separate P-L and NP(0)-P complexes. In some of these cases the coexpression of the wt polymerase with the mutant NP(0)-P complex could rescue the defect in replication, suggesting an interaction between these complexes. For some P mutants replication occurred in vivo, but not in vitro, suggesting that the intact cell is providing an unknown function that cannot be reproduced in extracts of cells. Thus, the C-terminal region of P is complex and possesses multiple functions besides NC binding that can be separated by mutation.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Phosphoproteins/genetics , Phosphoproteins/physiology , Sendai virus/physiology , Viral Proteins/genetics , DNA-Directed RNA Polymerases/physiology , Humans , Mutagenesis, Site-Directed , Nucleocapsid/metabolism , Nucleoproteins/metabolism , Protein Binding , Sendai virus/chemistry , Templates, Genetic , Transcription, Genetic , Tumor Cells, Cultured , Viral Proteins/metabolism , Viral Proteins/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...