Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Nanotechnology ; 31(32): 325402, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32340003

ABSTRACT

The fabrication of bendable electronic devices is a scientific-technological area of very rapid advance in which new materials and fabrication techniques are being continuously developed. In these kinds of devices, the fabrication of flexible conductive electrodes adherent to the substrate is a key factor. Further, eco-friendliness, low cost and fast production are essential requirements for the successful progress of new technologies. In this work, a novel method for obtaining graphene-based flexible electrodes is presented. Conductive films were obtained by means of the visible laser irradiation of graphene oxide layers deposited on polyethylene terephthalate substrates and self-standing membranes sandwiched between glass slides. Despite the low power of the laser system, the numerical simulations indicate the development of temperatures over 1000 K throughout the irradiated material. The laser-induced spatially confined heating leads to the reduction of the graphene oxide material, whereas the glass-based sandwich assembly avoids reoxidation from the surrounding air. By scanning and pixelated modes, reduced graphene oxide electrodes, up to 100 µm in thickness, and with a resistivity as low as 6 × 10-4 Ωm, were obtained in an easy and versatile way. Proof-of-concept microsupercapacitors and electrochemical sensors were fabricated with this technique, showing promising performance.

2.
Appl Radiat Isot ; 114: 114-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27235885

ABSTRACT

Here, we report our results referring to the preparation of Ce doped Y2.22MgGa2Al2SiO12, Y1.93MgAl4SiO12 and Y2.22Gd0.75Ga2Al3O12 using solid state reaction at high temperature. Several complementary methods (i.e. powder x-ray diffraction (XRPD), energy dispersive analysis of X-rays (EDX), scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR)) were studied to examine the effects of the synthesis procedure on the morphology and structure. XRD analyses revealed that all compounds include yttrium aluminate phase with garnet structure. Cathodoluminescence (CL), radioluminescence (RL) and photoluminescence (PL) measurements were carried out for clarification of relationship between host lattice defects and the spectral luminescence emissions. Luminescence emission of phosphors is peaked at 530nm assigned to 5d-4f transitions of the dopant Ce(3+) ions with a broad emission band in 400-700nm range. Under electron irradiation, the emission spectrum of Ce doped (YGd)3Ga2Al3O12 is well defined and has a characteristic fairly narrow and sharp emission band peaking at 312nm and 624nm corresponding to transition of (6)P7/2 →(8)S7/2 and (6)GJ→(6)PJ (Gd(3+)), respectively. We suggest some of phosphors might be excellent phototherapy phosphor materials under electron excitation.

3.
Biophys J ; 94(6): 2170-8, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18065478

ABSTRACT

Solutions of intact cardiac thin filaments were examined with transmission electron microscopy, dynamic light scattering (DLS), and particle-tracking microrheology. The filaments self-assembled in solution with a bell-shaped distribution of contour lengths that contained a population of filaments of much greater length than the in vivo sarcomere size ( approximately 1 mum) due to a one-dimensional annealing process. Dynamic semiflexible modes were found in DLS measurements at fast timescales (12.5 ns-0.0001 s). The bending modulus of the fibers is found to be in the range 4.5-16 x 10(-27) Jm and is weakly dependent on calcium concentration (with Ca2+ > or = without Ca2+). Good quantitative agreement was found for the values of the fiber diameter calculated from transmission electron microscopy and from the initial decay of DLS correlation functions: 9.9 nm and 9.7 nm with and without Ca2+, respectively. In contrast, at slower timescales and high polymer concentrations, microrheology indicates that the cardiac filaments act as short rods in solution according to the predictions of the Doi-Edwards chopsticks model (viscosity, eta approximately c(3), where c is the polymer concentration). This differs from the semiflexible behavior of long synthetic actin filaments at comparable polymer concentrations and timescales (elastic shear modulus, G' approximately c(1.4), tightly entangled) and is due to the relative ratio of the contour lengths ( approximately 30). The scaling dependence of the elastic shear modulus on the frequency (omega) for cardiac thin filaments is G' approximately omega(3/4 +/- 0.03), which is thought to arise from flexural modes of the filaments.


Subject(s)
Actin Cytoskeleton/chemistry , Biophysics/methods , Animals , Calcium/chemistry , Elasticity , Image Processing, Computer-Assisted , Light , Microscopy, Electron, Transmission , Muscle, Skeletal/metabolism , Myocardium/metabolism , Rheology , Scattering, Radiation , Swine , Viscosity
4.
J Control Release ; 104(2): 359-77, 2005 May 18.
Article in English | MEDLINE | ID: mdl-15907586

ABSTRACT

Cationic microparticles for DNA adsorption were formulated by blending poly(lactide-co-glycolide) (PLGA) (50:50), with different cationic agents, either PEI 25 kDa (polyethylenimine) or CTAB (cetyl-trimethyl-ammonium-bromide). The aim was to create adjuvant delivery systems increasing the efficiency of DNA vaccines. Microparticles formulated with 10% PEI exhibited a highly positive zeta-potential, small particle sizes, in contrast to particles prepared with CTAB, which revealed highly aggregated structures in scanning electron micrographs. PEI 10% microparticles efficiently adsorbed DNA and protected DNA from enzymatic degradation. Microparticles with up to 10% PEI did not affect membrane integrity whereas CTAB particles showed higher LDH release. Transfection efficiencies were assessed using a luciferase reporter gene assay compared to naked DNA and PEI/DNA polyplexes. DNA adsorbed onto microspheres with 10% or 50% PEI generally had higher transfection efficiencies than CTAB but reached lower expression levels than PEI/DNA polyplexes alone. This documented the intact release of DNA. The mechanism of gene delivery to non-phagocytic cells was studied via covalent fluorescence labeling of both the DNA and PEI by confocal microscopy and suggested uptake of DNA. Immunization of mice was performed using plasmids encoding immunodominant antigens of Listeria monocytogenes adsorbed onto RG 502 H+PEI 10% microparticles. The efficiency was tested by intravenous challenge with an otherwise lethal dose of L. monocytogenes. PLGA+PEI microspheres can be used as adjuvant delivery systems for DNA but further optimization is necessary to exploit their full potential.


Subject(s)
Lactic Acid/administration & dosage , Polyethyleneimine/administration & dosage , Polyglycolic Acid/administration & dosage , Polymers/administration & dosage , Vaccines, DNA/administration & dosage , Adsorption , Animals , Bacterial Vaccines/immunology , DNA/metabolism , Drug Carriers , Female , Hydrogen-Ion Concentration , Immunization , Listeria monocytogenes/immunology , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Microscopy, Electron, Scanning , Microspheres , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...