Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 389(2): 631-41, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17646972

ABSTRACT

For centuries, rosemary (Rosmarinus officinalis L.) has been used to prepare essential oils which, even now, are highly valued due to their various biological activities. Nevertheless, it has been noted that these activities often depend on the origin of the rosemary plant and the method of extraction. Since both of these quality parameters can greatly influence the chemical composition of rosemary oil, an original analytical method was developed where "dry distillation" was coupled to headspace solid-phase microextraction (HS-SPME) and then a data mining technique using the Kohonen self-organizing map algorithm was applied to the data obtained. This original approach uses the newly described microwave-accelerated distillation technique (MAD) and HS-SPME; neither of these techniques require external solvent and so this approach provides a novel "green" chemistry sampling method in the field of biological matrix analysis. The large data set obtained was then treated with a rarely used chemometric technique based on nonclassical statistics. Applied to 32 rosemary samples collected at the same time from 12 different sites in the north of Algeria, this method highlighted a strong correlation between the volatile chemical compositions of the samples and their origins, and it therefore allowed the samples to be grouped according to geographical distribution. Moreover, the method allowed us to identify the constituents that exerted the most influence during classification.


Subject(s)
Microwaves , Rosmarinus/chemistry , Gas Chromatography-Mass Spectrometry , Geography
3.
J Chromatogr Sci ; 39(12): 521-9, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11767240

ABSTRACT

This work presents the usefulness of five different solid-phase microextraction fibers in the screening of volatile organic compound (VOC) traces in air samples. The performances of these fibers are compared by studying the sorption kinetics in an equimolar gaseous mixture of eleven VOCs. For each fiber, static and dynamic sampling are compared. It is shown that repeatability is better for the dynamic mode (less than 6% for dynamic sampling and 10% for static sampling). The equilibrium time and the sensitivity vary considerably from one fiber type to another. As an example, the classical polydimethylsiloxane (PDMS) coating presented the shortest equilibration time (5 min) but also the poorest sensitivity, whereas the PDMS-Carboxen showed the longest extraction time but the greatest sensitivity. The estimation of the quantity of VOCs fixed on the target fiber allows for the determination of the different affinities of the compounds with the involved sorbent and relates them with physicochemical properties of the molecules. Competitive sorption is observed for the fibers involved with the adsorption process (i.e., PDMS-divinylbenzene and PDMS-Carboxen fibers). These competitions can lead to SPME calibration problems and thus bad quantitative analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...