Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Sci Total Environ ; 926: 172045, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38554968

ABSTRACT

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Subject(s)
Air Pollution, Indoor , Electronic Waste , Environmental Pollutants , Flame Retardants , Humans , Dust/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Vietnam , Electronic Waste/analysis , Air Pollution, Indoor/analysis , Organophosphates/analysis , Esters/analysis , China
2.
Sci Total Environ ; 920: 170759, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38336065

ABSTRACT

Aquatic animals and consumers of aquatic animals are exposed to increasingly complex mixtures of known and as-yet-unknown chemicals with dioxin-like toxicities in the water cycle. Effect- and cell-based bioanalysis can cover known and yet unknown dioxin and dioxin-like compounds as well as complex mixtures thereof but need to be standardized and integrated into international guidelines for environmental testing. In an international laboratory testing (ILT) following ISO/CD 24295 as standard procedure for rat cell-based DR CALUX un-spiked and spiked extracts of drinking-, surface-, and wastewater were validated to generate precision data for the development of the full ISO-standard. We found acceptable repeatability and reproducibility ranges below 36 % by DR CALUX bioassay for the tested un-spiked and spiked water of different origins. The presence of 17 PCDD/Fs and 12 dioxin-like PCBs was also confirmed by congener-specific GC-HRMS analysis. We compared the sum of dioxin-like activity levels measured by DR CALUX bioassay (expressed in 2,3,7,8-TCDD Bioanalytical Equivalents, BEQ; ISO 23196, 2022) with the obtained GC-HRMS chemical analysis results converted to toxic equivalents (TEQ; van den Berg et al., 2013).


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Rats , Animals , Polychlorinated Dibenzodioxins/analysis , Dioxins/toxicity , Dioxins/analysis , Wastewater , Reproducibility of Results , Dibenzofurans/analysis , Rivers , Luciferases , Polychlorinated Biphenyls/analysis , Biological Assay/methods , Dibenzofurans, Polychlorinated/analysis
3.
Ecotoxicol Environ Saf ; 264: 115424, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37672939

ABSTRACT

The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.


Subject(s)
Polychlorinated Biphenyls , Salmo salar , Humans , Animals , Salmo salar/genetics , Proteome , Oxidative Stress , Amino Acids
4.
Bull Environ Contam Toxicol ; 110(6): 110, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306801

ABSTRACT

Concentrations of 18 unsubstituted polycyclic aromatic hydrocarbons (PAHs) and 11 methylated derivatives (Me-PAHs) were measured in polyurethane foam-based passive air (PUF-PAS) and settled dust samples collected from end-of-life vehicle (ELV) processing workshops in northern Vietnam. Concentrations of total 29 PAHs ranged from 42 to 95 (median 57) ng/m3 and from 860 to 18,000 (median 5700) ng/g in air and dust samples, respectively. PAH levels in ELV air and dust samples were 1.5 ± 0.4 and 9.4 ± 7.9 times higher than levels found in a control house, suggesting ELV processing as potential PAH emission sources. Concentrations and proportions of Me-PAHs in total PAHs of the ELV air (26% ± 7%) and dust (41% ± 14%) were higher than those found in control house (18% in both air and dust). The occurrence of PAHs and Me-PAHs in the ELV workshops are attributed to not only pyrogenic but also petrogenic sources (i.e., improper treatment and management of fuels, lubricants, and vehicle oils).


Subject(s)
Polycyclic Aromatic Hydrocarbons , Dust , Vietnam , Motor Vehicles
5.
Sci Total Environ ; 866: 161258, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36587684

ABSTRACT

In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.


Subject(s)
Carps , Cosmetics , Triclosan , Water Pollutants, Chemical , Animals , Bioaccumulation , Water , Chlorpheniramine , Ecosystem , India , Cosmetics/analysis , Carps/metabolism , Pharmaceutical Preparations , Water Pollutants, Chemical/analysis , Environmental Monitoring
6.
Environ Sci Pollut Res Int ; 30(8): 20765-20774, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36255587

ABSTRACT

Estrogen, androgen, and glucocorticoid receptors (ER, AR, and GR) agonist activities in river water samples from Chennai and Bangalore (India), Jakarta (Indonesia), and Hanoi (Vietnam) were evaluated using a panel of chemical-activated luciferase gene expression (CALUX) assays and were detected mainly in the dissolved phase. The ER agonist activity levels were 0.011-55 ng estradiol (E2)-equivalent/l, higher than the proposed effect-based trigger (EBT) value of 0.5 ng/l in most of the samples. The AR agonist activity levels were < 2.1-110 ng dihydrotestosterone (DHT)-equivalent/l, and all levels above the limit of quantification exceeded the EBT value of 3.4 ng/l. GR agonist activities were detected in only Bangalore and Hanoi samples at dexamethasone (Dex)-equivalent levels of < 16-150 ng/l and exceeded the EBT value of 100 ng/l in only two Bangalore samples. Major compounds contributing to the ER, AR, and GR agonist activities were identified for water samples from Bangalore and Hanoi, which had substantially higher activities in all assays, by using a combination of fractionation, CALUX measurement, and non-target and target chemical analysis. The results for pooled samples showed that the major ER agonists were the endogenous estrogens E2 and estriol, and the major GR agonists were the synthetic glucocorticoids Dex and clobetasol propionate. The only AR agonist identified in major androgenic water extract fractions was DHT, but several unidentified compounds with the same molecular formulae as endogenous androgens were also found.


Subject(s)
Glucocorticoids , Water Pollutants, Chemical , Androgens/analysis , Biological Assay/methods , Estrogens/analysis , Estrone/analysis , Glucocorticoids/analysis , India , Rivers/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Indonesia , Vietnam
7.
Environ Geochem Health ; 45(6): 2705-2728, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36194303

ABSTRACT

Electrical and electronic waste (e-waste) has become a global concern, especially in developing countries. In this review, we conducted a literature survey of e-waste management practices, processing activities, and adverse effects in Vietnam, an emerging country in Southeast Asia, by gathering data from peer-reviewed articles published between 2009 and 2021. This is the first review paper to comprehensively discuss management and research aspects regarding e-waste in an Asian developing country. Due to the lack of an effective management and recycling system, a certain portion of Vietnamese e-waste has been processed by informal sectors without appropriate recycling and pollution control technology, resulting in localized contamination and human exposure to toxic chemicals. Primitive processing activities, such as manual dismantling, open burning, and plastic recycling, have been identified as important contributors to the environmental emission and human exposure to toxic elements (notably As, Mn, Ni, Pb, Zn) and organic pollutants like flame retardants, PAHs, PCBs, and dioxin-related compounds. Informal e-waste processing from these small-scale workshops can release pollutants at similar levels compared to large-scale facilities in developed countries. This fact suggests an urgent need to develop management best practices for e-waste in Vietnam as well as other emerging and developing countries, in order to increase recycling efficiency and minimize their adverse impacts on environmental and human health.


Subject(s)
Electronic Waste , Environmental Pollutants , Polychlorinated Biphenyls , Humans , Electronic Waste/analysis , Vietnam , Environmental Pollutants/toxicity , Environmental Pollutants/analysis , Polychlorinated Biphenyls/analysis , Recycling , Environment , Environmental Monitoring
8.
Environ Sci Pollut Res Int ; 30(1): 2061-2074, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35927405

ABSTRACT

Settled dust samples from Vietnamese end-of-life vehicle (ELV) processing, urban, and rural areas were analyzed for polybrominated diphenyl ethers (PBDEs) and other current-use brominated flame retardants (BFRs). PBDE levels found in dust samples collected from ELV workshops (median 390; range 120-520 ng/g) and nearby living areas (110; 36-650 ng/g) were generally higher than those in common house dust (25-170 ng/g). BDE-209 was the most predominant congener detected in almost all the samples, indicating extensive application of products containing deca-BDE mixtures. The dust samples from ELV workplaces showed a more abundance of lower brominated congeners (e.g., tetra- to hexa-BDEs) that may originate from car interior materials treated by penta-BDE formulations. Concentrations of other BFRs decreased in the order urban > rural > ELV dust, reflecting the current use of these compounds in new consumer products. Decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) were the major alternative BFRs. Daily intake doses and hazard indexes of PBDEs and some other BFRs through dust ingestion were estimated and showed acceptable levels of risk. However, more comprehensive risk assessment considering multiple exposure pathways should be performed, especially for ELV workers and children in the ELV processing and urban areas.


Subject(s)
Environmental Exposure , Flame Retardants , Child , Humans , Environmental Exposure/analysis , Environmental Monitoring , Dust/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Vietnam , Risk Assessment
9.
Ecotoxicol Environ Saf ; 247: 114227, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36306615

ABSTRACT

World Health Organization toxic equivalency factors (WHO-TEFs) are recommended for risk management of brominated dioxins in aquatic environments because limited information is available on their toxicity to fish. To validate this approach, we obtained the relative potencies of polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans and mixed-halogenated furans (PXDF, X = Cl/Br) against 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) based on their toxicity to the early-life stage of Japanese medaka (Oryzias latipes). 2,3,7,8-substituted brominated dibenzofurans caused typical dioxin exposure effects, such as blue-sac disease. The TCDD-relative potency factors (REPs) of test substances were calculated based on the concentrations in water and eggs that caused 20% lethality on day 28 post-fertilization, and were in the order of: 2-chloro-3,7,8-tribromodibenzofuran (REPwater 3.3, REPegg 4.6) > 2,3,7,8-tetrabromodibenzofuran (0.85, 0.92) > 2,3,4,7,8-pentabromodibenzofuran (0.053, 0.55) > 1,2,3,7,8-pentabromodibenzofuran (0.0091, 0.19). The transfer rate from water to eggs was lower for pentabrominated furans than tetrabrominated congeners, and was expected to decrease with the log Kow of the test substance. Although the REPegg value can be used to compare the toxicity potential of brominated dioxins, REPwater may be more suitable for environmental risk assessment because the uptake potential of these compounds from water should be considered. This study is the first to report higher toxicity of a PXDF congener compared with TCDD in vivo, further investigations of the toxicity of mixed-halogenated dioxins and environmental behavior are necessary for environmental risk assessment.


Subject(s)
Dioxins , Oryzias , Polychlorinated Dibenzodioxins , Animals , Dioxins/toxicity , Polychlorinated Dibenzodioxins/toxicity , Dibenzofurans , Risk Assessment , Furans , Water
10.
Sci Total Environ ; 853: 158669, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36108870

ABSTRACT

Measuring personal exposure to flame retardants (FRs) is crucial for assessing and controlling human health risks posed by FRs during the recycling of electronic waste (e-waste) and end-of-life vehicles (ELVs). Here, we examined the use of handwipes and silicone wristbands to measure personal FR exposure for e-waste and ELV recycling workers and their children in Vietnam. On the handwipes from the e-waste recycling workers, the predominant five FRs detected were TBBPA (median concentration: 3700 ng/wipe), BDE-209 (1700 ng/wipe), TPHP (500 ng/wipe), DBDPE (410 ng/wipe), and BPA-BDPP (360 ng/wipe). On the handwipes from ELV recycling workers, TPHP (60 ng/wipe), IPPDPP (47 ng/wipe), BIPPPP/DIPPDPP (33 ng/wipe), BDE-209 (26 ng/wipe), and TCIPP (23 ng/wipe) were detected as the five predominant FRs. On the wristbands from the e-waste recycling workers, the five predominant FRs detected were TBBPA (median concentration: 340 ng/g), BDE-209 (330 ng/g), DBDPE (65 ng/g), TPHP (50 ng/g), and TMPP (34 ng/g). On the wristbands from the ELV recycling workers, TPHP (34 ng/g), IPPDPP (18 ng/g), TCIPP (14 ng/g), TDMPP (13 ng/g), BIPPPP/DIPPDPP (9.3 ng/g) and TMPP (9.3 ng/g) were detected as the predominant FRs. The data obtained with the wristbands were comparable to those obtained with the handwipes. Similar FR profiles were found in between the workers and their children. The profiles indicate that the informal e-waste and ELV recycling caused FR exposure not only for workers but also for their children who live in the workshops. By using the handwipe and wristband sampling approaches, we determined types and concentrations of FRs to which the workers and their children were dominantly exposed. Silicone wristband- and handwipe-based assessment is expected to be effective means of measuring personal FR exposure for the informal e-waste and ELV recycling workers and their children.


Subject(s)
Electronic Waste , Flame Retardants , Child , Humans , Flame Retardants/analysis , Electronic Waste/analysis , Silicones , Vietnam , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Recycling , Dust/analysis , Organophosphates/analysis
11.
Environ Pollut ; 310: 119809, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35931384

ABSTRACT

Information about the co-occurrence of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) in the environment of informal waste processing areas is still limited, especially in emerging and developing countries. In this study, OPEs and HFRs including polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and chlorinated flame retardants (CFRs) were determined in settled dust from Vietnamese e-waste recycling (WR) and vehicle processing (VP) workshops. Pollutant concentrations decreased in the order: OPEs (median 1500; range 230-410,000 ng/g) ≈ PBDEs (1200; 58-250,000) > NBFRs (140; not detected - 250,000) > CFRs (13; 0.39-2200). HFR and OPE levels in the WR workshops for e-waste and obsolete plastic were significantly higher than in the VP workshops. Decabromodiphenyl ether and decabromodiphenyl ethane are major HFRs, accounting for 60 ± 26% and 25 ± 29% of total HFRs, respectively. Triphenyl phosphate, tris(2-chloroisopropyl) phosphate, and tris(1,3-dichloroisopropyl) phosphate dominated the OPE profiles, accounting for 30 ± 25%, 25 ± 16%, and 24 ± 18% of total OPEs, respectively. The OPE profiles differed between WR and VP dust samples, implying different usage patterns of these substances in polymer materials for electric/electronic appliance and automotive industries. Human health risk related to dust-bound HFRs and OPEs in the study areas was low.


Subject(s)
Electronic Waste , Flame Retardants , Humans , Dust , Environmental Monitoring , Esters , Halogenated Diphenyl Ethers , Organophosphates , Risk Assessment , Vietnam
12.
Mar Pollut Bull ; 182: 113995, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35939932

ABSTRACT

The accumulation profiles of nine perfluoroalkyl substances (PFASs) were determined in 95 muscle samples of seven freshwater (n = 65) and seven marine (n = 30) fish species collected in Northern Vietnam. In both groups of fish, perfluorooctane sulfonic acid (PFOS) was the most prevalent component, accounting for roughly 29 % of total PFASs. The total PFASs in freshwater fish species ranged from 0.08 to 8.06 ng/g wet weight (w.w), with the highest concentration found in topmouth culter (7.01 ± 1.23 ng/g w.w). In marine fish, the highest mean concentration of PFASs was detected in Asian sea bass (2.75 ± 0.54 ng/g, w.w). Estimation on the human dietary intake of PFASs from fish consumption resulted in hazard ratios (HR) ranging from 0.019 to 0.238 for freshwater fish and from 0.016 to 0.074 for marine fish, indicating low exposure risks associated with PFASs.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Fishes , Fluorocarbons/analysis , Fresh Water , Humans , Vietnam , Water Pollutants, Chemical/analysis
14.
Ecotoxicol Environ Saf ; 237: 113538, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35483143

ABSTRACT

Several naturally occurring dioxins, including 1,3,7-tribromodibenzo-p-dioxin (1,3,7-TriBDD), synthesized by red algae, have been detected in the marine environment. As 1,3,7-TriBDD is accumulated in mussels and fish, predators, such as marine birds, are exposed to this congener, similar to anthropogenic dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin TCDD). However, little is known about the impact of 1,3,7-TriBDD exposure on the bird health. To understand the effects of 1,3,7-TriBDD on birds, the phenotypic effects and hepatic transcriptome were investigated in chicken (Gallus gallus) embryos treated with 27 µM (2.9 ng/g egg) and 137 µM (14.4 ng/g egg) 1,3,7-TriBDD. The blood glucose levels in the 1,3,7-TriBDD-treated groups were lower than those in the control group. The transcriptome analysis of 6520 sequences in the 27 and 137 µM 1,3,7-TriBDD-treated groups identified 733 and 596 differentially expressed genes (DEGs). Cytochrome P450 1A4 and 1A5 were also identified as DEGs, suggesting that the aryl hydrocarbon receptor is activated by this congener. Pathway and network analyses with DEGs suggested that 1,3,7-TriBDD may induce carcinogenic effects and metabolic alterations. These results were similar to the effects on TCDD-treated embryos. Nevertheless, the overall transcriptome results suggested that compared with TCDD, 1,3,7-TriBDD has a unique impact on insulin- and peroxisome-signaling pathways in chicken embryos. Differences in altered transcriptome profiles between 1,3,7-TriBDD- and TCDD-treated embryos may lead to different phenotypic effects: less severe effects of 1,3,7-TriBDD and more fatal effects of TCDD. Collectively, these findings warrant the further assessment of the hazard and risk of 1,3,7-TriBDD on marine animals, considering increased exposure due to climate change.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Animals , Chick Embryo , Chickens/metabolism , Dioxins/toxicity , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Transcriptome
15.
Article in English | MEDLINE | ID: mdl-36612408

ABSTRACT

To establish the risk of the endocrine disrupting activity of polycyclic aromatic compounds, especially oxygenated and nitrated polycyclic aromatic hydrocarbons (oxy-PAHs and nitro-PAHs, respectively), antiandrogenic and estrogenic activities were determined using chemically activated luciferase expression (CALUX) assays with human osteoblast sarcoma cells. A total of 27 compounds including 9 oxy-PAHs (polycyclic aromatic ketones and quinones) and 8 nitro-PAHs was studied. The oxy-PAHs of 7H-benz[de]anthracen-7-one (BAO), 11H-benzo[a]fluoren-11-one (B[a]FO), 11H-benzo[b]fluoren-11-one (B[b]FO), and phenanthrenequinone (PhQ) exhibited significantly the potent inhibition of AR activation. All nitro-PAHs exhibited high antiandrogenic activities (especially high for 3-nitrofluoranthene (3-NFA) and 3-nitro-7H-benz[de]anthracen-7-one (3-NBAO)), and the AR inhibition was confirmed as noncompetitive for 3-NFA, 3-NBAO, and 1,3-dinitropyrene (1,3-DNPy). Antiandrogenic activity of 3-NFA demonstrated characteristically a U-shaped dose-response curve; however, the absence of fluorescence effect on the activity was confirmed. The prominent estrogenic activity dependent on dose-response curve was confirmed for 2 oxy-PAHs (i.e., B[a]FO and B[b]FO). Elucidating the role of AR and ER on the effects of polycyclic aromatic compounds (e.g., oxy- and nitro-PAHs) to endocrine dysfunctions in mammals and aquatic organisms remains a challenge.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Animals , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Nitrates/chemistry , Quinones , Luciferases , Mammals
16.
Environ Sci Technol ; 55(13): 8691-8699, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34100289

ABSTRACT

Nontarget screening studies have recently revealed the accumulation of typically unmonitored organohalogen compounds (OHCs) in various marine animals, but information for terrestrial food chains is still lacking. This study investigated the accumulation profiles of known and unknown OHCs in the liver of representative wild bird specimens from Osaka, Japan using nontarget analysis based on two-dimensional gas chromatography-time-of-flight mass spectrometry. A large number of unmonitored OHCs were identified, including anthropogenic contaminants and marine halogenated natural products (HNPs), and their accumulation profiles were considered to be influenced by terrestrial and brackish water-based diets. Anthropogenic OHCs were highly accumulated in terrestrial predator species (peregrine falcon, hawks, and black kite), and some unmonitored highly chlorinated contaminants reached the levels of microgram per gram lipid in the liver, i.e., C10-/C15-based chlordane related compounds (CHLs) and their epoxides, dichlorodiphenyldichloroethylene (DDE) homologues, and polychlorinated terphenyls (PCTs). In contrast, HNPs were accumulated at higher levels in piscivorous birds (gray heron and common cormorant). Considering the enrichment of the unmonitored C10-/C15-based CHLs, PCTs, and DDE homologues relative to structurally similar persistent organic pollutants (POPs) in high trophic-level species such as raptors, further studies are needed to elucidate their environmental levels, behavior in terrestrial food chains, and ecotoxicological impacts.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Polychlorinated Biphenyls , Raptors , Animals , Birds , Environmental Monitoring , Environmental Pollutants/analysis , Japan , Liver/chemistry
18.
Sci Total Environ ; 788: 147821, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34029822

ABSTRACT

Concentrations of 34 unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) and AhR-mediated activities in settled dust samples were determined by a combination of gas chromatography-mass spectrometry and an in vitro reporter gene assay (PAH-CALUX). The levels of Σ34PAHs and bioassay-derived benzo[a]pyrene equivalents (CALUX BaP-EQs) were significantly higher in workplace dust from informal end-of-life vehicle dismantling workshops than in common house dust and road dust. In all the samples, the theoretical BaP-EQs of PAHs (calculated using PAH-CALUX relative potencies) accounted for 28 ± 19% of the CALUX BaP-EQs, suggesting significant contribution of aryl hydrocarbon receptor (AhR) agonists and/or mixture effects. Interestingly, the bioassay-derived BaP-EQs in these samples were significantly correlated with not only unsubstituted PAHs with known carcinogenic potencies but also many Me-PAHs, which should be included in future monitoring and toxicity tests. The bioassay responses of many sample extracts were substantially reduced but not suppressed with sulfuric acid treatment, indicating contribution of persistent AhR agonists. Cancer risk assessment based on the CALUX BaP-EQs has revealed unacceptable level of risk in many cases. The application of bioassay-derived BaP-EQs may reduce underestimation in environmental management and risk evaluation regarding PAHs and their derivatives (notably Me-PAHs), suggesting a consideration of using in vitro toxic activity instead of conventional chemical-specific approach in such assessment practices.


Subject(s)
Neoplasms , Polycyclic Aromatic Hydrocarbons , Dust/analysis , Environmental Monitoring , Genes, Reporter , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment
19.
Chemosphere ; 280: 130720, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33964743

ABSTRACT

Concentrations and profiles of unsubstituted and methylated polycyclic aromatic hydrocarbons (PAHs and Me-PAHs) were analyzed in airborne particulate matter (PM) samples collected from high-traffic roads in Hanoi urban area. Levels of PAHs and Me-PAHs ranged from 210 to 660 (average 420) ng/m3 in total PM, and these pollutants were mainly associated with fine particles (PM2.5) rather than coarser ones (PM > 10 and PM10). Proportions of high-molecular-weight compounds (i.e., 5- and 6-ring) increased with decreasing particle size. Benzo[b+k]fluoranthene, indeno[1,2,3-cd]pyrene, and benzo[ghi]perylene were the most predominant compounds in the PM2.5 samples. In all the samples, Me-PAHs were less abundant than unsubstituted PAHs. The PAH-CALUX assays were applied to evaluate aryl hydrocarbon receptor (AhR) ligand activities in crude extracts and different fractions from the PM samples. Benzo[a]pyrene equivalents (BaP-EQs) derived by the PAH-CALUX assays for low polar fractions (mainly PAHs and Me-PAHs) ranged from 300 to 840 ng/m3, which were more consistent with theoretical values derived by using PAH-CALUX relative potencies (270-710 ng/m3) rather than conventional toxic equivalency factor-based values (22-69 ng/m3). Concentrations of PAHs and Me-PAHs highly correlated with bioassay-derived BaP-EQs. AhR-mediated activities of more polar compounds and interaction effects between PAH-related compounds were observed. By using PAH-CALUX BaP-EQs, the ILCR values ranged from 1.0 × 10-4 to 2.8 × 10-4 for adults and from 6.4 × 10-5 to 1.8 × 10-4 for children. Underestimation of cancer risk can be eliminated by using effect-directed method (e.g., PAH-CALUX) rather than chemical-specific approach.


Subject(s)
Air Pollutants , Neoplasms , Polycyclic Aromatic Hydrocarbons , Adult , Air Pollutants/analysis , Air Pollutants/toxicity , Child , Environmental Monitoring , Humans , Ligands , Particle Size , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment , Vietnam
20.
Chemosphere ; 263: 128272, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297216

ABSTRACT

Barnacles are ubiquitous in coastal ecosystems of different geographical regions worldwide. This is the first study attempting to assess the suitability of barnacles as bioindicators of persistent organic pollutants (POPs) in coastal environments. Barnacles were collected from the coasts around Peninsular Malaysia and analyzed for POPs including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs). Among POPs, PCBs showed the highest concentrations with elevated contributions of CB28 and CB153. As for PBDEs, BDE47 was the most frequently detected congener, while BDE209 was detected in barnacles from two stations in Port Klang and the levels reached up to >70% of total PBDE concentrations. Concentrations of OCPs detected in barnacles were in the order of CHLs > DDTs > HCHs > HCB and 4,4'-DDE and cis- and trans-chlordane were the predominant OCP compounds. A comparison with previous studies in Malaysia showed consistent levels of POPs. Green mussels collected from selected barnacles' habitats, for the sake of a comparison, showed almost similar profiles but lower concentrations of POPs. The spatial distribution of POPs observed in barnacles and comparison of POP levels and profiles with mussels indicated that barnacles can be useful bioindicators for monitoring POPs contamination in the coastal ecosystems.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Thoracica , Animals , Ecosystem , Environmental Biomarkers , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Chlorinated/analysis , Malaysia , Persistent Organic Pollutants , Pesticides/analysis , Polychlorinated Biphenyls/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...