Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15751-15757, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38768324

ABSTRACT

Rare-earth phosphates were thought to be good candidates as ultraviolet/deep ultraviolet optical materials due to their relatively large bandgap and optical properties. In this paper, the authors screened out a family of XPO4 (X = Sc, Y, La, and Lu) compounds with an enhanced bandgap (HSE06 bandgap ≥ 7.61 eV) and birefringence (0.0934-0.2003@1064 nm) using first-principles calculations. The origin of enhanced optical properties was investigated using projected density of states, distortion indices, and Born effective charges. The results show that the PO4 anionic groups and X-O polyhedra give the main contribution in determining the optical properties, and the PO4 anionic groups give more contribution than other functional basic units. The spin-orbit interaction was also investigated. Similar band structures were found after spin-orbit coupling (SOC) was considered, and slightly enhanced birefringence was found when SOC was applied to these rare-earth phosphates.

2.
Dalton Trans ; 53(7): 3377-3385, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38264854

ABSTRACT

Phosphates, whose obvious disadvantage is the relatively small birefringence, can be overcome by the introduction of post-transition metal cations containing stereochemically active lone-pair electrons. In this paper, two new compounds were successfully explored in the A-Sb-P-O system, i.e. Cs2Sb3O(PO4)3 (CsSbPO) and (NH4)2Sb4O2(H2O)(PO4)2[PO3(OH)]2 (NH4SbPOH). Transmission spectra show that CsSbPO has a surprising transmission range with a UV cutoff edge of 213 nm. First-principles calculations show that both compounds have a wide band gap (5.02 eV for CsSbPO and 5.30 eV for NH4SbPOH) and enlarged birefringence (Δn = 0.034@1064 nm for CsSbPO and Δn = 0.045@1064 nm for NH4SbPOH). The results of real-space atom-cutting investigations show that the distorted [SbOx] polyhedra originating from the asymmetric lone pair electrons give the main contribution to the total birefringence and overcome the disadvantage of small birefringence of phosphates but maintain wide transition windows.

3.
Inorg Chem ; 62(8): 3609-3615, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36795025

ABSTRACT

Enthusiasm for the exploration of nonlinear alkali metal borates remains high. Focusing on the Li-B-O-X (X = Cl and Br) system, two examples of noncentrosymmetric borates, Li3B8O13Cl and Li3B8O13Br, were obtained using a high-temperature solution method under vacuum conditions. Structurally, the Li3B8O13X crystals exhibit two independent alternately arranged three-dimensional B-O network structures formed by the basic building block unit B8O16. The performance measurements demonstrate their short ultraviolet cutoff edges. The theoretical calculation indicates that the BO3 units dominate the contribution to their large optical anisotropy with the birefringence, 0.094 and 0.088@1064 nm for Li3B8O13Cl and Li3B8O13Br, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...