Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36851315

ABSTRACT

Lichen planus is a distinctive mucocutaneous disease with well-established clinical and histopathologic criteria. Lichenoid eruptions closely resemble lichen planus and may sometimes be indistinguishable from it. Systemic agents previously associated have included medications, viral infections and vaccines. Sporadic case reports of lichen planus and lichenoid reactions associated with COVID-19 vaccines have recently emerged. Herein, we review the world literature (31 patients) and expand it with a case series of 15 patients who presented with vaccine-induced lichenoid eruption (V-ILE). The spectrum of clinical and histopathologic findings is discussed with emphasis on the subset whose lesions manifested in embryologic fusion lines termed lines of Blaschko. This rare Blaschkoid distribution appeared in seven of the 46 patients studied. Of interest, all seven were linked to the mRNA COVID-19 vaccines. We believe that all lichenoid eruptions should be approached with a heightened index of suspicion and patients should be specifically questioned with regards to their vaccination history. When diagnosed early in its course, V-ILE is easily treated and resolves quickly in almost all patients with or without hyperpigmentation. Additional investigative studies regarding its immunopathology and inflammatory signaling pathways may offer insight into other Th1-driven autoimmune phenomena related to COVID-19 vaccination.

2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193958

ABSTRACT

Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.


Subject(s)
Mycobacterium tuberculosis/genetics , Type VII Secretion Systems/genetics , Animals , Bacterial Secretion Systems/genetics , Biological Evolution , Evolution, Molecular , Gene Amplification/genetics , Mice , Mycobacterium tuberculosis/metabolism , Type VII Secretion Systems/physiology , Virulence , Virulence Factors/genetics
3.
Antiviral Res ; 191: 105088, 2021 07.
Article in English | MEDLINE | ID: mdl-34019950

ABSTRACT

3-deazaneplanocin A (DzNep) and its 3-brominated analogs inhibit replication of several RNA viruses. This antiviral activity is attributed to inhibition of S-adenosyl homocysteine hydrolase (SAHase) and consequently inhibition of viral methyltransferases, impairing translation of viral transcripts. The L-enantiomers of some derivatives retain antiviral activity despite dramatically reduced inhibition of SAHase in vitro. To better understand the mechanisms by which these compounds exert their antiviral effects, we compared DzNep, its 3-bromo-derivative, CL123, and the related enantiomers, CL4033 and CL4053, for their activities towards the model negative-sense RNA virus vesicular stomatitis virus (VSV). In cell culture, DzNep, CL123 and CL4033 each exhibited 50 percent inhibitory concentrations (IC50s) in the nanomolar range whereas the IC50 for the L-form, CL4053, was 34-85 times higher. When a CL123-resistant mutant (VSVR) was selected, it exhibited cross-resistance to each of the neplanocin analogs, but retained sensitivity to the adenosine analog BCX4430, an RNA chain terminator. Sequencing of VSVR identified a mutation in the C-terminal domain (CTD) of the viral large (L) protein, a domain implicated in regulation of L protein methyltransferase activity. CL123 inhibited VSV viral mRNA 5' cap methylation, impaired viral protein synthesis and decreased association of viral mRNAs with polysomes. Modest impacts on viral transcription were also demonstrated. VSVR exhibited partial resistance in each of these assays but its replication was impaired, relative to the parent VSV, in the absence of the inhibitors. These data suggest that DzNep, CL123 and CL4033 inhibit VSV through impairment of viral mRNA cap methylation and that the L-form, CL4053, based on the cross-resistance of VSVR, may act by a similar mechanism.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Vesicular stomatitis Indiana virus/drug effects , Virus Replication/drug effects , Adenosine/chemistry , Adenosine/pharmacology , Animals , Chlorocebus aethiops , Inhibitory Concentration 50 , Methylation/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/pharmacology , Transcription, Genetic/drug effects , Vero Cells , Vesicular stomatitis Indiana virus/genetics
4.
Nat Commun ; 10(1): 4215, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527595

ABSTRACT

A major constraint for developing new anti-tuberculosis drugs is the limited number of validated targets that allow eradication of persistent infections. Here, we uncover a vulnerable component of Mycobacterium tuberculosis (Mtb) persistence metabolism, the aspartate pathway. Rapid death of threonine and homoserine auxotrophs points to a distinct susceptibility of Mtb to inhibition of this pathway. Combinatorial metabolomic and transcriptomic analysis reveals that inability to produce threonine leads to deregulation of aspartate kinase, causing flux imbalance and lysine and DAP accumulation. Mtb's adaptive response to this metabolic stress involves a relief valve-like mechanism combining lysine export and catabolism via aminoadipate. We present evidence that inhibition of the aspartate pathway at different branch-point enzymes leads to clearance of chronic infections. Together these findings demonstrate that the aspartate pathway in Mtb relies on a combination of metabolic control mechanisms, is required for persistence, and represents a target space for anti-tuberculosis drug development.


Subject(s)
Aspartic Acid/metabolism , Mycobacterium tuberculosis/metabolism , Antitubercular Agents/pharmacology , Humans , Lysine/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Threonine/metabolism , Tuberculosis/microbiology
5.
PLoS Pathog ; 13(7): e1006515, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28753640

ABSTRACT

We have previously shown that the Mycobacterium tuberculosis universal stress protein Rv2623 regulates mycobacterial growth and may be required for the establishment of tuberculous persistence. Here, yeast two-hybrid and affinity chromatography experiments have demonstrated that Rv2623 interacts with one of the two forkhead-associated domains (FHA I) of Rv1747, a putative ATP-binding cassette transporter annotated to export lipooligosaccharides. FHA domains are signaling protein modules that mediate protein-protein interactions to modulate a wide variety of biological processes via binding to conserved phosphorylated threonine (pT)-containing oligopeptides of the interactors. Biochemical, immunochemical and mass spectrometric studies have shown that Rv2623 harbors pT and specifically identified threonine 237 as a phosphorylated residue. Relative to wild-type Rv2623 (Rv2623WT), a mutant protein in which T237 has been replaced with a non-phosphorylatable alanine (Rv2623T237A) exhibits decreased interaction with the Rv1747 FHA I domain and diminished growth-regulatory capacity. Interestingly, compared to WT bacilli, an M. tuberculosis Rv2623 null mutant (ΔRv2623) displays enhanced expression of phosphatidyl-myo-inositol mannosides (PIMs), while the ΔRv1747 mutant expresses decreased levels of PIMs. Animal studies have previously shown that ΔRv2623 is hypervirulent, while ΔRv1747 is growth-attenuated. Collectively, these data have provided evidence that Rv2623 interacts with Rv1747 to regulate mycobacterial growth; and this interaction is mediated via the recognition of the conserved Rv2623 pT237-containing FHA-binding motif by the Rv1747 FHA I domain. The divergent aberrant PIM profiles and the opposing in vivo growth phenotypes of ΔRv2623 and ΔRv1747, together with the annotated lipooligosaccharide exporter function of Rv1747, suggest that Rv2623 interacts with Rv1747 to modulate mycobacterial growth by negatively regulating the activity of Rv1747; and that Rv1747 might function as a transporter of PIMs. Because these glycolipids are major mycobacterial cell envelope components that can impact on the immune response, our findings raise the possibility that Rv2623 may regulate bacterial growth, virulence, and entry into persistence, at least in part, by modulating the levels of bacillary PIM expression, perhaps through negatively regulating the Rv1747-dependent export of the immunomodulatory PIMs to alter host-pathogen interaction, thereby influencing the fate of M. tuberculosis in vivo.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Humans , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Phosphate-Binding Proteins , Phosphorylation , Protein Binding , Protein Domains , Two-Hybrid System Techniques
6.
Nat Microbiol ; 2: 16232, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27918526

ABSTRACT

Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.


Subject(s)
Bacterial Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology , Endosomal Sorting Complexes Required for Transport/metabolism , Host-Pathogen Interactions , Immune Evasion , Lymphocyte Activation , Mycobacterium tuberculosis/immunology , Animals , Bacterial Proteins/genetics , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression , Gene Knockout Techniques , Macrophages/immunology , Mice, Inbred C57BL , Tuberculosis/microbiology , Tuberculosis/pathology
7.
J Biol Chem ; 291(42): 22315-22326, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27566542

ABSTRACT

Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD+-dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection.


Subject(s)
Ligases/metabolism , Mycobacterium tuberculosis/enzymology , Oxazoles/metabolism , Protein Processing, Post-Translational/physiology , Siderophores/biosynthesis , Acetylation , Catalysis , Humans , Ligases/genetics , Lysine Acetyltransferases/genetics , Lysine Acetyltransferases/metabolism , Mycobacterium tuberculosis/genetics , Protein Domains , Siderophores/genetics
8.
Proc Natl Acad Sci U S A ; 113(3): E348-57, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26729876

ABSTRACT

Mycobacterium tuberculosis (Mtb) encodes five type VII secretion systems (T7SS), designated ESX-1-ESX-5, that are critical for growth and pathogenesis. The best characterized is ESX-1, which profoundly impacts host cell interactions. In contrast, the ESX-3 T7SS is implicated in metal homeostasis, but efforts to define its function have been limited by an inability to recover deletion mutants. We overcame this impediment using medium supplemented with various iron complexes to recover mutants with deletions encompassing select genes within esx-3 or the entire operon. The esx-3 mutants were defective in uptake of siderophore-bound iron and dramatically accumulated cell-associated mycobactin siderophores. Proteomic analyses of culture filtrate revealed that secretion of EsxG and EsxH was codependent and that EsxG-EsxH also facilitated secretion of several members of the proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) protein families (named for conserved PE and PPE N-terminal motifs). Substrates that depended on EsxG-EsxH for secretion included PE5, encoded within the esx-3 locus, and the evolutionarily related PE15-PPE20 encoded outside the esx-3 locus. In vivo characterization of the mutants unexpectedly showed that the ESX-3 secretion system plays both iron-dependent and -independent roles in Mtb pathogenesis. PE5-PPE4 was found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3. The importance of this iron-acquisition function was dependent upon host genotype, suggesting a role for ESX-3 secretion in counteracting host defense mechanisms that restrict iron availability. Further, we demonstrate that the ESX-3 T7SS secretes certain effectors that are important for iron uptake while additional secreted effectors modulate virulence in an iron-independent fashion.


Subject(s)
Bacterial Proteins/metabolism , Iron/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Aerosols , Animals , Cell Polarity/drug effects , Genotype , Hemin/pharmacology , Homeodomain Proteins/metabolism , Host-Pathogen Interactions/drug effects , Humans , Iron/pharmacology , Macrophages/cytology , Macrophages/microbiology , Mass Spectrometry , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Mutation/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Oxazoles/metabolism , Phenotype , Proteomics , Siderophores/metabolism , Substrate Specificity/drug effects , Virulence/drug effects
9.
mBio ; 6(6): e01313-15, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26578674

ABSTRACT

UNLABELLED: Mycobacterium haemophilum is an emerging pathogen associated with a variety of clinical syndromes, most commonly skin infections in immunocompromised individuals. M. haemophilum exhibits a unique requirement for iron supplementation to support its growth in culture, but the basis for this property and how it may shape pathogenesis is unclear. Using a combination of Illumina, PacBio, and Sanger sequencing, the complete genome sequence of M. haemophilum was determined. Guided by this sequence, experiments were performed to define the basis for the unique growth requirements of M. haemophilum. We found that M. haemophilum, unlike many other mycobacteria, is unable to synthesize iron-binding siderophores known as mycobactins or to utilize ferri-mycobactins to support growth. These differences correlate with the absence of genes associated with mycobactin synthesis, secretion, and uptake. In agreement with the ability of heme to promote growth, we identified genes encoding heme uptake machinery. Consistent with its propensity to infect the skin, we show at the whole-genome level the genetic closeness of M. haemophilum with Mycobacterium leprae, an organism which cannot be cultivated in vitro, and we identify genes uniquely shared by these organisms. Finally, we identify means to express foreign genes in M. haemophilum. These data explain the unique culture requirements for this important pathogen, provide a foundation upon which the genome sequence can be exploited to improve diagnostics and therapeutics, and suggest use of M. haemophilum as a tool to elucidate functions of genes shared with M. leprae. IMPORTANCE: Mycobacterium haemophilum is an emerging pathogen with an unknown natural reservoir that exhibits unique requirements for iron supplementation to grow in vitro. Understanding the basis for this iron requirement is important because it is fundamental to isolation of the organism from clinical samples and environmental sources. Defining the molecular basis for M. haemophilium's growth requirements will also shed new light on mycobacterial strategies to acquire iron and can be exploited to define how differences in such strategies influence pathogenesis. Here, through a combination of sequencing and experimental approaches, we explain the basis for the iron requirement. We further demonstrate the genetic closeness of M. haemophilum and Mycobacterium leprae, the causative agent of leprosy which cannot be cultured in vitro, and we demonstrate methods to genetically manipulate M. haemophilum. These findings pave the way for the use of M. haemophilum as a model to elucidate functions of genes shared with M. leprae.


Subject(s)
Culture Media/chemistry , Genome, Bacterial , Mycobacterium haemophilum/growth & development , Mycobacterium haemophilum/genetics , Base Sequence , Heme/genetics , Heme/metabolism , Hemoglobins/metabolism , Humans , Iron/metabolism , Mycobacterium leprae/genetics , Oxazoles/metabolism , Phenotype , Sequence Analysis, DNA
10.
mBio ; 5(3): e01245-14, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24895308

ABSTRACT

UNLABELLED: Specialized transduction has proven to be useful for generating deletion mutants in most mycobacteria, including virulent Mycobacterium tuberculosis. We have improved this system by developing (i) a single-step strategy for the construction of allelic exchange substrates (AES), (ii) a temperature-sensitive shuttle phasmid with a greater cloning capacity than phAE87, and (iii) bacteriophage-mediated transient expression of site-specific recombinase to precisely excise antibiotic markers. The methods ameliorate rate-limiting steps in strain construction in these difficult-to-manipulate bacteria. The new methods for strain construction were demonstrated to generalize to all classes of genes and chromosomal loci by generating more than 100 targeted single- or multiple-deletion substitutions. These improved methods pave the way for the generation of a complete ordered library of M. tuberculosis null strains, where each strain is deleted for a single defined open reading frame in M. tuberculosis. IMPORTANCE: This work reports major advances in the methods of genetics applicable to all mycobacteria, including but not limited to virulent M. tuberculosis, which would facilitate comparative genomics to identify drug targets, genetic validation of proposed pathways, and development of an effective vaccine. This study presents all the new methods developed and the improvements to existing methods in an integrated way. The work presented in this study could increase the pace of mycobacterial genetics significantly and will immediately be of wide use. These new methods are transformative and allow for the undertaking of construction of what has been one of the most fruitful resources in model systems: a comprehensive, ordered library set of the strains, each of which is deleted for a single defined open reading frame.


Subject(s)
Gene Deletion , Mycobacterium tuberculosis/genetics , Recombination, Genetic , Transduction, Genetic , Alleles , Base Sequence , Gene Expression , Gene Order , Homologous Recombination , Humans , Molecular Sequence Data , Mycobacteriophages/physiology , Mycobacterium tuberculosis/virology , Plasmids/genetics
11.
PLoS Pathog ; 10(5): e1004115, 2014 May.
Article in English | MEDLINE | ID: mdl-24809459

ABSTRACT

Mycobacterium tuberculosis bacilli display two signature features: acid-fast staining and the capacity to induce long-term latent infections in humans. However, the mechanisms governing these two important processes remain largely unknown. Ser/Thr phosphorylation has recently emerged as an important regulatory mechanism allowing mycobacteria to adapt their cell wall structure/composition in response to their environment. Herein, we evaluated whether phosphorylation of KasB, a crucial mycolic acid biosynthetic enzyme, could modulate acid-fast staining and virulence. Tandem mass spectrometry and site-directed mutagenesis revealed that phosphorylation of KasB occurred at Thr334 and Thr336 both in vitro and in mycobacteria. Isogenic strains of M. tuberculosis with either a deletion of the kasB gene or a kasB_T334D/T336D allele, mimicking constitutive phosphorylation of KasB, were constructed by specialized linkage transduction. Biochemical and structural analyses comparing these mutants to the parental strain revealed that both mutant strains had mycolic acids that were shortened by 4-6 carbon atoms and lacked trans-cyclopropanation. Together, these results suggested that in M. tuberculosis, phosphorylation profoundly decreases the condensing activity of KasB. Structural/modeling analyses reveal that Thr334 and Thr336 are located in the vicinity of the catalytic triad, which indicates that phosphorylation of these amino acids would result in loss of enzyme activity. Importantly, the kasB_T334D/T336D phosphomimetic and deletion alleles, in contrast to the kasB_T334A/T336A phosphoablative allele, completely lost acid-fast staining. Moreover, assessing the virulence of these strains indicated that the KasB phosphomimetic mutant was attenuated in both immunodeficient and immunocompetent mice following aerosol infection. This attenuation was characterized by the absence of lung pathology. Overall, these results highlight for the first time the role of Ser/Thr kinase-dependent KasB phosphorylation in regulating the later stages of mycolic acid elongation, with important consequences in terms of acid-fast staining and pathogenicity.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/metabolism , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity , Mycolic Acids/metabolism , Protein Serine-Threonine Kinases/metabolism , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase/genetics , Animals , Bacterial Proteins/genetics , Catalytic Domain/genetics , Cell Wall/metabolism , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, SCID , Microbiological Techniques/methods , Models, Molecular , Mycobacterium tuberculosis/genetics , Mycolic Acids/chemistry , Phosphorylation , Staining and Labeling/methods , Tuberculosis/diagnosis , Tuberculosis/metabolism , Tuberculosis/microbiology , Virulence
12.
mBio ; 5(3): e01179-14, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24865558

ABSTRACT

UNLABELLED: G: enetic engineering has contributed greatly to our understanding of Mycobacterium tuberculosis biology and has facilitated antimycobacterial and vaccine development. However, methods to generate M. tuberculosis deletion mutants remain labor-intensive and relatively inefficient. Here, methods are described that significantly enhance the efficiency (greater than 100-fold) of recovering deletion mutants by the expression of mycobacteriophage recombineering functions during the course of infection with specialized transducing phages delivering allelic exchange substrates. This system has been successfully applied to the CDC1551 strain of M. tuberculosis, as well as to a ΔrecD mutant generated in the CDC1551 parental strain. The latter studies were undertaken as there were precedents in both the Escherichia coli literature and mycobacterial literature for enhancement of homologous recombination in strains lacking RecD. In combination, these measures yielded a dramatic increase in the recovery of deletion mutants and are expected to facilitate construction of a comprehensive library of mutants with every nonessential gene of M. tuberculosis deleted. The findings also open up the potential for sophisticated genetic screens, such as synthetic lethal analyses, which have so far not been feasible for the slow-growing mycobacteria. IMPORTANCE: Genetic manipulation of M. tuberculosis is hampered by laborious and relatively inefficient methods for generating deletion mutant strains. The combined use of phage-based transduction and recombineering methods greatly enhances the efficiency by which knockout strains can be generated. The additional elimination of recD further enhances this efficiency. The methods described herein will facilitate the construction of comprehensive gene knockout libraries and expedite the isolation of previously difficult to recover mutants, promoting antimicrobial and vaccine development.


Subject(s)
Genetic Engineering , Mycobacteriophages/physiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/virology , Transduction, Genetic , Alleles , Gene Expression Regulation, Bacterial , Genetic Loci , Mutation , Plasmids/genetics , Recombination, Genetic
13.
Antimicrob Agents Chemother ; 55(8): 3889-98, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628538

ABSTRACT

Drug resistance in Mycobacterium tuberculosis has become a serious global health threat, which is now complicated by the emergence of extensively drug-resistant strains. New drugs that are active against drug-resistant tuberculosis (TB) are needed. We chose to search for new inhibitors of the enoyl-acyl carrier protein (ACP) reductase InhA, the target of the first-line TB drug isoniazid (also known as isonicotinoic acid hydrazide [INH]). A subset of a chemical library, composed of 300 compounds inhibiting Plasmodium falciparum enoyl reductase, was tested against M. tuberculosis. Four compounds were found to inhibit M. tuberculosis growth with MICs ranging from 1 µM to 10 µM. Testing of these compounds against M. tuberculosis in vitro revealed that only two compounds (CD39 and CD117) were bactericidal against drug-susceptible and drug-resistant M. tuberculosis. These two compounds were also bactericidal against M. tuberculosis incubated under anaerobic conditions. Furthermore, CD39 and CD117 exhibited increased bactericidal activity when used in combination with INH or rifampin, but CD39 was shown to be toxic to eukaryotic cells. The compounds inhibit InhA as well the fatty acid synthase type I, and CD117 was found to also inhibit tuberculostearic acid synthesis. This study provides the TB drug development community with two chemical scaffolds that are suitable for structure-activity relationship study to improve on their cytotoxicities and bactericidal activities in vitro and in vivo.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Aerobiosis , Anaerobiosis , Animals , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Catalase/metabolism , Cells, Cultured , Drug Design , Drug Resistance, Multiple, Bacterial , Fatty Acid Synthase, Type I/antagonists & inhibitors , Macrophages/drug effects , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Stearic Acids/metabolism , Structure-Activity Relationship , Tuberculosis, Multidrug-Resistant/microbiology
14.
Nat Struct Mol Biol ; 17(2): 165-72, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081868

ABSTRACT

Ebola viral protein 35 (VP35), encoded by the highly pathogenic Ebola virus, facilitates host immune evasion by antagonizing antiviral signaling pathways, including those initiated by RIG-I-like receptors. Here we report the crystal structure of the Ebola VP35 interferon inhibitory domain (IID) bound to short double-stranded RNA (dsRNA), which together with in vivo results reveals how VP35-dsRNA interactions contribute to immune evasion. Conserved basic residues in VP35 IID recognize the dsRNA backbone, whereas the dsRNA blunt ends are 'end-capped' by a pocket of hydrophobic residues that mimic RIG-I-like receptor recognition of blunt-end dsRNA. Residues critical for RNA binding are also important for interferon inhibition in vivo but not for viral polymerase cofactor function of VP35. These results suggest that simultaneous recognition of dsRNA backbone and blunt ends provides a mechanism by which Ebola VP35 antagonizes host dsRNA sensors and immune responses.


Subject(s)
Interferons/antagonists & inhibitors , RNA, Double-Stranded/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Viral Regulatory and Accessory Proteins/chemistry , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , Crystallography, X-Ray , DEAD Box Protein 58 , DEAD-box RNA Helicases/immunology , Ebolavirus/chemistry , Ebolavirus/immunology , Immune Evasion , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Receptors, Immunologic
15.
PLoS Pathog ; 5(5): e1000460, 2009 May.
Article in English | MEDLINE | ID: mdl-19478878

ABSTRACT

Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i) M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii) Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii) Rv2623 binds ATP; and iv) the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/physiology , Carrier Proteins/physiology , Mycobacterium tuberculosis/growth & development , Tuberculosis/etiology , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Chronic Disease , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Guinea Pigs , Mice , Phosphate-Binding Proteins , Protein Binding , Tuberculosis/pathology
16.
Tuberculosis (Edinb) ; 89(1): 17-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18948063

ABSTRACT

As previously published, after aerosol infection with Mycobacterium tuberculosis H37Rv, New Zealand white rabbits established infection with active bacillary replication, but later contained disease to a paucibacillary state through an effective adaptive response consistent with latency. Despite the heterogeneity among outbred rabbits, the resistant response was uniform. Immunosuppression resulted in reactivation with increased lung bacillary burden. Using this rabbit model, we isolated bacillary RNA from infected rabbit lungs and assessed transcriptional profiles of bacillary genes using RT-PCR to examine genes differentially regulated during active replication, persistence, steroid-induced reactivation, and post-steroid immune reconstitution. Genes involved in hypoxia response (fdxA), resuscitation promoting factors (rpfB), and DNA repair pathways (Rv2191) may be important in bacillary persistence. Further investigation into these gene pathways is warranted.


Subject(s)
Drug Resistance, Microbial/genetics , Gene Expression Regulation, Bacterial , Lung/microbiology , Mycobacterium tuberculosis/genetics , Tuberculosis/genetics , Animals , Dexamethasone/therapeutic use , Flow Cytometry , Gene Expression , Immunosuppressive Agents/therapeutic use , Models, Animal , Mycobacterium tuberculosis/metabolism , Rabbits , Reverse Transcriptase Polymerase Chain Reaction/methods , Transcription, Genetic , Tuberculosis/drug therapy , Tuberculosis/immunology
17.
Infect Immun ; 76(9): 4269-81, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18591237

ABSTRACT

Resuscitation-promoting factors (Rpfs), apparent peptidoglycan hydrolases, have been implicated in the reactivation of dormant bacteria. We previously demonstrated that deletion of rpfB impaired reactivation of Mycobacterium tuberculosis in a mouse model. Because M. tuberculosis encodes five Rpf paralogues, redundant functions among the family members might obscure rpf single-knockout phenotypes. A series of rpf double knockouts were therefore generated. One double mutant, DeltarpfAB, exhibited several striking phenotypes. Consistent with the proposed cell wall-modifying function of Rpfs, DeltarpfAB exhibited an altered colony morphology. Although DeltarpfAB grew comparably to the parental strain in axenic culture, in vivo it exhibited deficiency in reactivation induced in C57BL/6 mice by the administration of nitric oxide synthase inhibitor (aminoguanidine) or by CD4(+) T-cell depletion. Notably, the reactivation deficiency of DeltarpfAB was more severe than that of DeltarpfB in aminoguanidine-treated mice. A similar deficiency was observed in DeltarpfAB reactivation from a drug-induced apparently sterile state in infected NOS2(-/-) mice upon cessation of antimycobacterial therapy. Secondly, DeltarpfAB showed a persistence defect not seen with the DeltarpfB or DeltarpfA single mutants. Interestingly, DeltarpfAB exhibited impaired growth in primary mouse macrophages and induced higher levels of the proinflammatory cytokines tumor necrosis factor alpha and interleukin 6. Simultaneous reintroduction of rpfA and rpfB into the double-knockout strain complemented the colony morphology and macrophage cytokine secretion phenotypes. Phenotypes related to cell wall composition and macrophage responses suggest that M. tuberculosis Rpfs may influence the outcome of reactivation, in part, by modulating innate immune responses to the bacterium.


Subject(s)
Bacterial Proteins/physiology , Cytokines/physiology , Immunity, Innate , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/immunology , Tuberculosis/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Blotting, Southern , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , DNA, Bacterial/genetics , Female , Gene Deletion , Genetic Complementation Test , Germ-Free Life , Interleukin-6/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Survival Analysis , Tumor Necrosis Factor-alpha/metabolism
18.
Tuberculosis (Edinb) ; 88(3): 187-96, 2008 May.
Article in English | MEDLINE | ID: mdl-18068491

ABSTRACT

The large reservoir of human latent tuberculosis (TB) contributes to the global success of the pathogen, Mycobacterium tuberculosis (Mtb). We sought to test whether aerosol infection of rabbits with Mtb H37Rv could model paucibacillary human latent TB. The lung burden of infection peaked at 5 weeks after aerosol infection followed by host containment of infection that was achieved in all rabbits. One-third of rabbits had at least one caseous granuloma with culturable bacilli at 36 weeks after infection suggesting persistent paucibacillary infection. Corticosteroid-induced immunosuppression initiated after disease containment resulted in reactivation of disease. Seventy-two percent of rabbits had culturable bacilli in the right upper lung lobe homogenates compared to none of the untreated controls. Discontinuation of dexamethasone led to predictable lymphoid recovery, with a proportion of rabbits developing multicentric large caseous granuloma. The development and severity of the immune reconstitution inflammatory syndrome (IRIS) was dependent on the antigen load at the time of immunosuppression and subsequent bacillary replication during corticosteroid-induced immunosuppression. Clinically, many aspects were similar to IRIS in severely immunosuppressed HIV-infected patients who have functional restoration of T cells in response to effective (highly active) antiretroviral therapy. This corticosteroid model is the only animal model of the IRIS. Further study of the rabbit model of TB latency, reactivation and IRIS may be important in understanding the immunopathogenesis of these poorly modeled states as well as for improved diagnostics for specific stages of disease.


Subject(s)
Disease Models, Animal , Immune Reconstitution Inflammatory Syndrome/microbiology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Pulmonary/microbiology , Aerosols , Animals , Dexamethasone/toxicity , Flow Cytometry , Glucocorticoids/toxicity , Immune Reconstitution Inflammatory Syndrome/chemically induced , Immune Reconstitution Inflammatory Syndrome/immunology , Lung/pathology , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/isolation & purification , Organ Size , Rabbits , Tuberculoma/microbiology , Tuberculoma/pathology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/pathology
19.
Infect Immun ; 74(5): 2985-95, 2006 May.
Article in English | MEDLINE | ID: mdl-16622237

ABSTRACT

Approximately one-third of the human population is latently infected with Mycobacterium tuberculosis, comprising a critical reservoir for disease reactivation. Despite the importance of latency in maintaining M. tuberculosis in the human population, little is known about the mycobacterial factors that regulate persistence and reactivation. Previous in vitro studies have implicated a family of five related M. tuberculosis proteins, called resuscitation promoting factors (Rpfs), in regulating mycobacterial growth. We studied the in vivo role of M. tuberculosis rpf genes in an established mouse model of M. tuberculosis persistence and reactivation. After an aerosol infection with the M. tuberculosis Erdman wild type (Erdman) or single-deletion rpf mutants to establish chronic infections in mice, reactivation was induced by administration of the nitric oxide (NO) synthase inhibitor aminoguanidine. Of the five rpf deletion mutants tested, one (deltaRv1009) exhibited a delayed reactivation phenotype, manifested by delayed postreactivation growth kinetics and prolonged median survival times among infected animals. Immunophenotypic analysis suggested differences in pulmonary B-cell responses between Erdman- and deltaRv1009-infected mice at advanced stages of reactivation. Analysis of rpf gene expression in the lungs of Erdman-infected mice revealed that relative expression of four of the five rpf-like genes was diminished at late times following reactivation, when bacterial numbers had increased substantially, suggesting that rpf gene expression may be regulated in a growth phase-dependent manner. To our knowledge, deltaRv1009 is the first M. tuberculosis mutant to have a specific defect in reactivation without accompanying growth defects in vitro or during acute infection in vivo.


Subject(s)
Bacterial Proteins/physiology , Cytokines/physiology , Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Animals , B-Lymphocytes/physiology , Bacterial Proteins/genetics , Chronic Disease , Cytokines/genetics , Female , Guanidines/pharmacology , Lung/microbiology , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Phenotype , Tuberculosis/immunology
20.
Cell Microbiol ; 8(2): 218-32, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16441433

ABSTRACT

The granulomatous reaction is the hallmark of the host response to infection with Mycobacterium tuberculosis. Despite its apparent importance to host defence against the tubercle bacillus, the granulomatous response remains to be completely defined. The present study used histological, immunohistochemical and flow-cytometric analyses to characterize pulmonic granulomatous tissues of tuberculous mice and humans. The kinetics of recruitment of neutrophils, macrophages, dendritic cells, and T and B lymphocytes into the lungs of mice infected aerogenically with the virulent Erdman strain of M. tuberculosis was evaluated in detail in both the acute and persistent phase of infection. A hypoxia-sensing compound based on the 2-nitroimidazole structure (EF5), together with immunohistochemical studies targeting endothelial cells were used to examine the relative oxygen tension in tuberculous granulomatous tissues in mice. The results have provided evidence that: (i) the granulomatous tissues are a highly organized structure whose formation is regulated by orderly recruitment of specific immune cells exhibiting distinct spatial relationship with one another; (ii) the granulomatous reaction, at least in the mouse, may represent an exaggerated response to the tubercle bacillus that can play a role in the development of immunopathology; (iii) B lymphoid aggregates are a prominent feature in both murine and human granulomatous tissues, although the immune cells that are most prominently associated with these clusters vary among the two species; (iv) murine tuberculous granulomatous tissues are relatively aerobic, suggesting that mouse models of persistent tuberculosis may not be suitable for the study of any hypoxic response of M. tuberculosis.


Subject(s)
Granuloma/pathology , Lung/pathology , Mycobacterium tuberculosis/physiology , Oxygen/physiology , Tuberculosis/pathology , Acute Disease , Anaerobiosis , Animals , B-Lymphocytes/immunology , Cell Movement , Chronic Disease , Dendritic Cells/immunology , Female , Granuloma/immunology , Granuloma/microbiology , Humans , Lung/immunology , Lung/microbiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Neutrophils/immunology , T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...