Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 180(6): 1245-1261.e21, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32142654

ABSTRACT

In response to transcription-blocking DNA damage, cells orchestrate a multi-pronged reaction, involving transcription-coupled DNA repair, degradation of RNA polymerase II (RNAPII), and genome-wide transcription shutdown. Here, we provide insight into how these responses are connected by the finding that ubiquitylation of RNAPII itself, at a single lysine (RPB1 K1268), is the focal point for DNA-damage-response coordination. K1268 ubiquitylation affects DNA repair and signals RNAPII degradation, essential for surviving genotoxic insult. RNAPII degradation results in a shutdown of transcriptional initiation, in the absence of which cells display dramatic transcriptome alterations. Additionally, regulation of RNAPII stability is central to transcription recovery-persistent RNAPII depletion underlies the failure of this process in Cockayne syndrome B cells. These data expose regulation of global RNAPII levels as integral to the cellular DNA-damage response and open the intriguing possibility that RNAPII pool size generally affects cell-specific transcription programs in genome instability disorders and even normal cells.


Subject(s)
DNA Damage , RNA Polymerase II/metabolism , DNA Repair , HEK293 Cells , Humans , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic , Ubiquitination , Ultraviolet Rays
2.
Methods ; 159-160: 146-156, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30769100

ABSTRACT

Transcribing RNA polymerase II (RNAPII) is decorated by a plethora of post-translational modifications that mark different stages of transcription. One important modification is RNAPII ubiquitylation, which occurs in response to numerous different stimuli that cause RNAPII stalling, such as DNA damaging agents, RNAPII inhibitors, or depletion of the nucleotide pool. Stalled RNAPII triggers a so-called "last resort pathway", which involves RNAPII poly-ubiquitylation and proteasome-mediated degradation. Different approaches have been described to study RNAPII poly-ubiquitylation and degradation, each method with its own advantages and caveats. Here, we describe optimised strategies for detecting ubiquitylated RNAPII and studying its degradation, but these protocols are suitable for studying other ubiquitylated proteins as well.


Subject(s)
RNA Polymerase II/analysis , RNA Polymerase II/metabolism , Ubiquitination , Animals , DNA Damage , Humans , Mammals/genetics , Mammals/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/genetics , Transcription, Genetic , Ultraviolet Rays , Yeasts/enzymology , Yeasts/genetics , Yeasts/metabolism
3.
Nucleic Acids Res ; 46(18): 9578-9590, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30137431

ABSTRACT

Expression of the transcription factor SOX4 is often elevated in human cancers, where it generally correlates with tumor-progression and poor-disease outcome. Reduction of SOX4 expression results in both diminished tumor-incidence and metastasis. In breast cancer, TGF-ß-mediated induction of SOX4 has been shown to contribute to epithelial-to-mesenchymal transition (EMT), which controls pro-metastatic events. Here, we identify SMAD3 as a novel, functionally relevant SOX4 interaction partner. Genome-wide analysis showed that SOX4 and SMAD3 co-occupy a large number of genomic loci in a cell-type specific manner. Moreover, SOX4 expression was required for TGF-ß-mediated induction of a subset of SMAD3/SOX4-co-bound genes regulating migration and extracellular matrix-associated processes, and correlating with poor-prognosis. These findings identify SOX4 as an important SMAD3 co-factor controlling transcription of pro-metastatic genes and context-dependent shaping of the cellular response to TGF-ß. Targeted disruption of the interaction between these factors may have the potential to disrupt pro-oncogenic TGF-ß signaling, thereby impairing tumorigenesis.


Subject(s)
Breast Neoplasms/genetics , SOXC Transcription Factors/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Prognosis , Signal Transduction , Transcription, Genetic
4.
Cell ; 167(1): 260-274.e22, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27641504

ABSTRACT

The inter- and intra-tumor heterogeneity of breast cancer needs to be adequately captured in pre-clinical models. We have created a large collection of breast cancer patient-derived tumor xenografts (PDTXs), in which the morphological and molecular characteristics of the originating tumor are preserved through passaging in the mouse. An integrated platform combining in vivo maintenance of these PDTXs along with short-term cultures of PDTX-derived tumor cells (PDTCs) was optimized. Remarkably, the intra-tumor genomic clonal architecture present in the originating breast cancers was mostly preserved upon serial passaging in xenografts and in short-term cultured PDTCs. We assessed drug responses in PDTCs on a high-throughput platform and validated several ex vivo responses in vivo. The biobank represents a powerful resource for pre-clinical breast cancer pharmacogenomic studies (http://caldaslab.cruk.cam.ac.uk/bcape), including identification of biomarkers of response or resistance.


Subject(s)
Biological Specimen Banks , Breast Neoplasms , Xenograft Model Antitumor Assays , Animals , Biomarkers, Pharmacological , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , High-Throughput Screening Assays , Humans , Mice , Pharmacogenomic Testing , Tumor Cells, Cultured
5.
Cell Rep ; 13(11): 2480-2490, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26686634

ABSTRACT

The transforming growth factor beta (TGF-ß) signaling pathway exerts opposing effects on cancer cells, acting as either a tumor promoter or a tumor suppressor. Here, we show that these opposing effects are a result of the synergy between SMAD3, a downstream effector of TGF-ß signaling, and the distinct epigenomes of breast-tumor-initiating cells (BTICs). These effects of TGF-ß are associated with distinct gene expression programs, but genomic SMAD3 binding patterns are highly similar in the BTIC-promoting and BTIC-suppressing contexts. Our data show cell-type-specific patterns of DNA and histone modifications provide a modulatory layer by determining accessibility of genes to regulation by TGF-ß/SMAD3. LBH, one such context-specific target gene, is regulated according to its DNA methylation status and is crucial for TGF-ß-dependent promotion of BTICs. Overall, these results reveal that the epigenome plays a central and previously overlooked role in shaping the context-specific effects of TGF-ß in cancer.


Subject(s)
Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta/pharmacology , Binding Sites , Cell Line, Tumor , DNA/chemistry , DNA/metabolism , DNA Methylation , Epigenesis, Genetic , Histones/metabolism , Humans , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Promoter Regions, Genetic , Protein Binding , RNA Interference , RNA, Small Interfering/metabolism , Smad2 Protein/metabolism , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...