Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS Negl Trop Dis ; 17(7): e0011273, 2023 07.
Article in English | MEDLINE | ID: mdl-37498943

ABSTRACT

Rickettsia microorganisms are causative agents of several neglected emerging infectious diseases in humans transmitted by arthropods including ticks. In this study, ticks were collected from four geographical regions of Uganda and pooled in sizes of 1-179 ticks based on location, tick species, life stage, host, and time of collection. Then, they were tested by real-time PCR for Rickettsia species with primers targeting gltA, 17kDa and ompA genes, followed by Sanger sequencing of the 17kDa and ompA genes. Of the 471 tick pools tested, 116 (24.6%) were positive for Rickettsia spp. by the gltA primers. The prevalence of Rickettsia varied by district with Gulu recording the highest (30.1%) followed by Luwero (28.1%) and Kasese had the lowest (14%). Tick pools from livestock (cattle, goats, sheep, and pigs) had the highest positivity rate, 26.9%, followed by vegetation, 23.1%, and pets (dogs and cats), 19.7%. Of 116 gltA-positive tick pools, 86 pools were positive using 17kDa primers of which 48 purified PCR products were successfully sequenced. The predominant Rickettsia spp. identified was R. africae (n = 15) in four tick species, followed by R. conorii (n = 5) in three tick species (Haemaphysalis elliptica, Rhipicephalus appendiculatus, and Rh. decoloratus). Rickettsia conorii subsp. israelensis was detected in one tick pool. These findings indicate that multiple Rickettsia spp. capable of causing human illness are circulating in the four diverse geographical regions of Uganda including new strains previously known to occur in the Mediterranean region. Physicians should be informed about Rickettsia spp. as potential causes of acute febrile illnesses in these regions. Continued and expanded surveillance is essential to further identify and locate potential hotspots with Rickettsia spp. of concern.


Subject(s)
Cat Diseases , Dog Diseases , Ixodidae , Rhipicephalus , Rickettsia , Spotted Fever Group Rickettsiosis , Animals , Cattle , Humans , Dogs , Sheep , Cats , Swine , Uganda/epidemiology , Israel , Rickettsia/genetics , Ixodidae/microbiology , Spotted Fever Group Rickettsiosis/epidemiology , Rhipicephalus/genetics , Real-Time Polymerase Chain Reaction/veterinary , Goats
2.
BMC Infect Dis ; 23(1): 435, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370005

ABSTRACT

Human adenoviruses (HAdV) are a diverse group of viruses causing a broad range of infections of the respiratory, urogenital and gastrointestinal tracts and keratoconjunctivitis. There are seven species of human adenoviruses with 113 genotypes which may contain multiple genetic variants. This study characterised respiratory human adenoviruses and associated factors in samples collected from selected hospitals in Uganda. A total of 2,298 nasopharyngeal samples were collected between the period of 2008 to 2016 from patients seeking health care at tertiary hospitals for influenza-like illness. They were screened by polymerase chain reaction (PCR) to determine the prevalence of HAdV. HAdV was cultured in A549 cell lines and the hexon gene was sequenced for genotyping. Of the 2,298 samples tested, 225 (9.8%) were adenovirus-positive by PCR. Age was found to be significantly associated with HAdV infections (p = 0.028) with 98% (220/225) of the positives in children aged 5 years and below and none in adults above 25 years of age. The sequenced isolates belonged to species HAdV-B and HAdV-C with most isolates identified as genotype B3. The results showed a high prevalence and genetic diversity in respiratory HAdV circulating in Ugandan population. Deeper genomic characterization based on whole genome sequencing may be necessary to further elucidate possible transmission and impact of current adenovirus-vectored vaccines in Africa.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Adult , Humans , Infant , Uganda/epidemiology , Sequence Analysis, DNA , Adenovirus Infections, Human/epidemiology , Respiratory Tract Infections/epidemiology , Genotype , Phylogeny
3.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: mdl-36146881

ABSTRACT

A (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs. One hundred and fifty H9N2 isolates were subjected to whole genome sequencing on the Illumina MiSeq platform. The sequence data analysis and comparison with contemporary isolates revealed that the virus was first introduced into Uganda in 2014 from ancestors in the Middle East. There has since been an increase in nucleotide substitutions and reassortments among the viruses within and between live bird markets, leading to variations in phylogeny of the different segments, although overall diversity remained low. The isolates had several mutations such as HA-Q226L and NS-I106M that enable mammalian host adaptation, NP-M105V, PB1-D3V, and M1-T215A known for increased virulence/pathogenicity and replication, and PA-E199D, NS-P42S, and M2-S31N that promote drug resistance. The PA-E199D substitution in particular confers resistance to the endonuclease inhibitor Baloxavir acid, which is one of the new anti-influenza drugs. Higher EC50 was observed in isolates with a double F105L+E199D substitution that may suggest a possible synergistic effect. These H9N2 viruses have established an endemic situation in live bird markets in Uganda because of poor biosecurity practices and therefore pose a zoonotic threat. Regular surveillance is necessary to further generate the needed evidence for effective control strategies and to minimize the threats.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Influenza, Human , Animals , Dibenzothiepins , Endonucleases/genetics , Evolution, Molecular , Host Adaptation , Humans , Influenza in Birds/epidemiology , Mammals , Morpholines , Nucleotides , Phylogeny , Poultry , Pyridones , Triazines , Uganda/epidemiology , Virulence/genetics
4.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34578330

ABSTRACT

Influenza D virus (IDV) was first isolated in 2011 in Oklahoma, USA from pigs presenting with influenza-like symptoms. IDV is known to mainly circulate in ruminants, especially cattle. In Africa, there is limited information on the epidemiology of IDV, although the virus has likely circulated in the region since 2012. In the present study, we investigated the seropositivity of IDV among domestic ruminants and swine in West and East Africa from 2017 to 2020. Serum samples were analyzed using the hemagglutination inhibition (HI) assay. Our study demonstrated that IDV is still circulating in Africa, with variations in seropositivity among countries and species. The highest seropositivity was detected in cattle (3.9 to 20.9%). Our data highlights a need for extensive surveillance of IDV in Africa in order to better understand the epidemiology of the virus in the region.


Subject(s)
Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/immunology , Ruminants/immunology , Ruminants/virology , Thogotovirus/immunology , Thogotovirus/pathogenicity , Africa, Eastern/epidemiology , Africa, Western/epidemiology , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/immunology , Cattle Diseases/virology , Female , Male , Seroepidemiologic Studies , Swine , Swine Diseases/epidemiology , Swine Diseases/immunology , Swine Diseases/virology
5.
BMC Infect Dis ; 21(1): 585, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134656

ABSTRACT

BACKGROUND: Human coronaviruses are causative agents of respiratory infections with several subtypes being prevalent worldwide. They cause respiratory illnesses of varying severity and have been described to be continuously emerging but their prevalence is not well documented in Uganda. This study assessed the seroprevalence of antibodies against the previously known human coronaviruses prior 2019 in Uganda. METHODS: A total 377 serum samples collected from volunteers that showed influenza like illness in five hospital-based sentinel sites and archived were analyzed using a commercial Qualitative Human Coronavirus Antibody IgG ELISA kit. Although there is no single kit available that can detect the presence of all the circulating coronaviruses, this kit uses a nucleoprotein, aa 340-390 to coat the wells and since there is significant homology among the various human coronavirus strains with regards to the coded for proteins, there is significant cross reactivity beyond HCoV HKU-39849 2003. This gives the kit a qualitative ability to detect the presence of human coronavirus antibodies in a sample. RESULTS: The overall seroprevalence for all the sites was 87.53% with no significant difference in the seroprevalence between the Hospital based sentinel sites (p = 0.8). Of the seropositive, the age group 1-5 years had the highest percentage (46.97), followed by 6-10 years (16.67) and then above 20 (16.36). An odds ratio of 1.6 (CI 0.863-2.97, p = 0.136) showed that those volunteers below 5 years of age were more likely to be seropositive compared to those above 5 years. The seropositivity was generally high throughout the year with highest being recorded in March and the lowest in February and December. CONCLUSIONS: The seroprevalence of Human coronaviruses is alarmingly high which calls for need to identify and characterize the circulating coronavirus strains so as to guide policy on the control strategies.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus , Immunoglobulin G/blood , Adolescent , Adult , Child , Child, Preschool , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Female , Hospitals , Humans , Infant , Male , Sentinel Surveillance , Seroepidemiologic Studies , Uganda/epidemiology , Young Adult
6.
Viruses ; 13(4)2021 04 02.
Article in English | MEDLINE | ID: mdl-33918166

ABSTRACT

Genetic analysis of circulating avian influenza viruses (AIVs) in wild birds at different geographical regions during the same period could improve our knowledge about virus transmission dynamics in natural hosts, virus evolution as well as zoonotic potential. Here, we report the genetic and molecular characterization of H6N2 influenza viruses isolated from migratory birds in Turkey, Egypt, and Uganda during 2017-2018. The Egyptian and Turkish isolates were genetically closer to each other than they were to the virus isolated from Uganda. Our results also suggest that multiple reassortment events were involved in the genesis of the isolated viruses. All viruses contained molecular markers previously associated with increased replication and/or pathogenicity in mammals. The results of this study indicate that H6N2 viruses carried by migratory birds on the West Asian/East African and Mediterranean/Black Sea flyways have the potential to transmit to mammals including humans. Additionally, adaptation markers in these viruses indicate the potential risk for poultry, which also increases the possibility of human exposure to these viruses.


Subject(s)
Influenza A virus/classification , Influenza A virus/genetics , Influenza in Birds/virology , Phylogeny , Reassortant Viruses/genetics , Animal Migration , Animals , Animals, Wild/virology , Chickens/virology , Egypt , Genome, Viral , Humans , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Poultry/virology , Turkey , Uganda
7.
Emerg Microbes Infect ; 10(1): 753-761, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33754959

ABSTRACT

Sub-Saharan Africa was historically considered an animal influenza cold spot, with only sporadic highly pathogenic H5 outbreaks detected over the last 20 years. However, in 2017, low pathogenic avian influenza A(H9N2) viruses were detected in poultry in Sub-Saharan Africa. Molecular, phylogenetic, and antigenic characterization of isolates from Benin, Togo, and Uganda showed that they belonged to the G1 lineage. Isolates from Benin and Togo clustered with viruses previously described in Western Africa, whereas viruses from Uganda were genetically distant and clustered with viruses from the Middle East. Viruses from Benin exhibited decreased cross-reactivity with those from Togo and Uganda, suggesting antigenic drift associated with reduced replication in Calu-3 cells. The viruses exhibited mammalian adaptation markers similar to those of the human strain A/Senegal/0243/2019 (H9N2). Therefore, viral genetic and antigenic surveillance in Africa is of paramount importance to detect further evolution or emergence of new zoonotic strains.


Subject(s)
Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza in Birds/virology , Poultry Diseases/virology , Africa South of the Sahara , Animals , Antibodies, Viral/immunology , Antigenic Variation , Chickens/virology , Cross Reactions , Evolution, Molecular , Humans , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza A Virus, H9N2 Subtype/physiology , Influenza, Human/virology , Phylogeny , Virulence , Virus Replication
8.
Viruses ; 11(8)2019 08 05.
Article in English | MEDLINE | ID: mdl-31387326

ABSTRACT

: Dromedary camels are the natural reservoirs of the Middle East respiratory syndrome coronavirus (MERS-CoV). Camels are mostly bred in East African countries then exported into Africa and Middle East for consumption. To understand the distribution of MERS-CoV among camels in North Africa and the Middle East, we conducted surveillance in Egypt, Senegal, Tunisia, Uganda, Jordan, Saudi Arabia, and Iraq. We also performed longitudinal studies of three camel herds in Egypt and Jordan to elucidate MERS-CoV infection and transmission. Between 2016 and 2018, a total of 4027 nasal swabs and 3267 serum samples were collected from all countries. Real- time PCR revealed that MERS-CoV RNA was detected in nasal swab samples from Egypt, Senegal, Tunisia, and Saudi Arabia. Microneutralization assay showed that antibodies were detected in all countries. Positive PCR samples were partially sequenced, and a phylogenetic tree was built. The tree suggested that all sequences are of clade C and sequences from camels in Egypt formed a separate group from previously published sequences. Longitudinal studies showed high seroprevalence in adult camels. These results indicate the widespread distribution of the virus in camels. A systematic active surveillance and longitudinal studies for MERS-CoV are needed to understand the epidemiology of the disease and dynamics of viral infection.


Subject(s)
Camelus/virology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/classification , Africa/epidemiology , Animals , Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Reservoirs/virology , Longitudinal Studies , Middle East/epidemiology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Phylogeny , Population Surveillance , Seroepidemiologic Studies
9.
PLoS One ; 11(10): e0164861, 2016.
Article in English | MEDLINE | ID: mdl-27755572

ABSTRACT

INTRODUCTION: Influenza surveillance was conducted in Uganda from October 2008 to December 2014 to identify and understand the epidemiology of circulating influenza strains in out-patient clinic attendees with influenza-like illness and inform control strategies. METHODOLOGY: Surveillance was conducted at five hospital-based sentinel sites. Nasopharyngeal and/or oropharyngeal samples, epidemiological and clinical data were collected from enrolled patients. Real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to identify and subtype influenza strains. Data were double-entered into an Epi Info 3.5.3 database and exported to STATA 13.0 software for analysis. RESULTS: Of the 6,628 patient samples tested, influenza virus infection was detected in 10.4% (n = 687/6,628) of the specimens. Several trends were observed: influenza circulates throughout the year with two peaks; the major one from September to November and a minor one from March to June. The predominant strains of influenza varied over the years: Seasonal Influenza A(H3) virus was predominant from 2008 to 2009 and from 2012 to 2014; Influenza A(H1N1)pdm01 was dominant in 2010; and Influenza B virus was dominant in 2011. The peaks generally coincided with times of higher humidity, lower temperature, and higher rainfall. CONCLUSION: Influenza circulated throughout the year in Uganda with two major peaks of outbreaks with similar strains circulating elsewhere in the region. Data on the circulating strains of influenza and its patterns of occurrence provided critical insights to informing the design and timing of influenza vaccines for influenza prevention in tropical regions of sub-Saharan Africa.


Subject(s)
Influenza, Human/epidemiology , Child , Child, Preschool , Female , Humans , Humidity , Infant , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/virology , Male , Nasopharynx/virology , Oropharynx/virology , Prevalence , RNA, Viral/metabolism , Rain , Real-Time Polymerase Chain Reaction , Seasons , Temperature , Uganda/epidemiology
10.
Influenza Other Respir Viruses ; 10(6): 486-492, 2016 11.
Article in English | MEDLINE | ID: mdl-27339410

ABSTRACT

We report a whole-genome analysis of 19 influenza A(H1N1)pdm09 isolates from four Ugandan hospitals between 2009 and 2011. The isolates differed from the vaccine strain A/California/07/2009 by three amino acid substitutions P100S, S220T, and I338V in the hemagglutinin and by two amino acid substitutions V106I and N248D in the neuraminidase proteins with consistent mutations in all gene segments distinguishing isolates from the 2009/2010 to 2010/2011 seasons. Phylogenetic analysis showed low genetic evolution, with genetic distances of 0%-1.3% and 0.1%-1.6% for HA and NA genes, respectively. The amino acid substitutions did not lead to antigenic differences from the reference strains.


Subject(s)
Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Amino Acid Substitution , Antigens, Viral , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Neuraminidase/chemistry , Neuraminidase/genetics , Phylogeny , RNA, Viral/genetics , Seasons , Sequence Analysis, RNA , Uganda/epidemiology
11.
BMC Vet Res ; 10: 50, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24576325

ABSTRACT

BACKGROUND: Avian influenza viruses may cause severe disease in a variety of domestic animal species worldwide, with high mortality in chickens and turkeys. To reduce the information gap about prevalence of these viruses in animals in Uganda, this study was undertaken. RESULTS: Influenza A virus prevalence by RT-PCR was 1.1% (45/4,052) while seroprevalence by ELISA was 0.8% (24/2,970). Virus prevalence was highest in domestic ducks (2.7%, 17/629) and turkeys (2.6%, 2/76), followed by free-living waterfowl (1.3%, 12/929) and swine (1.4%, 7/511). A lower proportion of chicken samples (0.4%, 7/1,865) tested positive. No influenza A virus was isolated. A seasonal prevalence of these viruses in waterfowl was 0.7% (4/561) for the dry and 2.2% (8/368) for the wet season. In poultry, prevalence was 0.2% (2/863) for the dry and 1.4% (24/1,713) for the wet season, while that of swine was 0.0% (0/159) and 2.0% (7/352) in the two seasons, respectively. Of the 45 RT-PCR positive samples, 13 (28.9%) of them were H5 but none was H7. The 19 swine sera positive for influenza antibodies by ELISA were positive for H1 antibodies by HAI assay, but the subtype(s) of ELISA positive poultry sera could not be determined. Antibodies in the poultry sera could have been those against subtypes not included in the HAI test panel. CONCLUSIONS: The study has demonstrated occurrence of influenza A viruses in animals in Uganda. The results suggest that increase in volumes of migratory waterfowl in the country could be associated with increased prevalence of these viruses in free-living waterfowl and poultry.


Subject(s)
Animals, Wild , Anseriformes , Influenza A virus/isolation & purification , Livestock , Animals , Female , Logistic Models , Male , Odds Ratio , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Risk Factors , Seroepidemiologic Studies , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...