Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 61(1-2): 161-71, 2011.
Article in English | MEDLINE | ID: mdl-21497612

ABSTRACT

The alpha-7 neuronal nicotinic receptor is a novel pharmacological target for psychiatric and cognitive disorders. Selective radiotracer tools for pre-clinical receptor occupancy can facilitate the interpretation of the biological actions of small molecules at a target receptor. We discovered a high affinity nicotinic alpha-7 subtype-selective ligand, AZ11637326, with physical-chemical and pharmacokinetic properties suitable for an in vivo radioligand tool. [(3)H]AZ11637326 synthesis by tritiodehalogenation of the corresponding tribromide precursor yielded a high specific activity radiotracer with high affinity alpha-7 receptor binding in the rat hippocampus determined by autoradiography (Kd = 0.2 nM). When [(3)H]AZ11637326 was administered to rats by intravenous bolus, rapid uptake was measured in the brain followed by a 3-4 fold greater specific binding in regions containing the alpha-7 receptor (frontal cortex, hippocampus, hypothalamus and midbrain) when compared to non-target regions (striatum and cerebellum). Systemic administration of the high affinity alpha-7 receptor antagonist, methyllycaconitine (MLA), or pretreatment with alpha-7 selective agonists (AR-R17779, PyrQTC, DBCO-4-POM, and DBCO-3-POM) significantly blocked the alpha-7 specific binding of [(3)H]AZ11637326 in the rat brain. The rank order of ligand ED(50) values for in vivo alpha-7 receptor occupancy in rat hippocampus was: DBCO-4-POM > DBCO-3-POM âˆ¼ MLA > PyrQTC > AR-R17779. The occupancy affinity shift was consistent with in vitro binding affinity in autoradiography. Our studies established the optimal conditions for [(3)H]AZ11637326 in vivo specific binding in the rat brain and support the use of [(3)H]AZ11637326 as a pre-clinical tool for assessment of novel alpha-7 compounds in drug discovery.


Subject(s)
Azabicyclo Compounds/metabolism , Brain/metabolism , Drug Delivery Systems/methods , Receptors, Nicotinic/metabolism , Spiro Compounds/metabolism , Tritium/metabolism , Animals , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/chemistry , Brain/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Ligands , Male , Protein Binding/physiology , Rats , Rats, Sprague-Dawley , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Tissue Distribution/drug effects , Tissue Distribution/physiology , Tritium/administration & dosage , alpha7 Nicotinic Acetylcholine Receptor
2.
Synapse ; 64(8): 624-33, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20340171

ABSTRACT

Positron emission tomography (PET) antagonist ligands such as [(11)C]-raclopride are commonly used to study dopamine D2 receptor (D2) binding of antipsychotics. It has been suggested that agonist radioligands bind preferentially to the high-affinity state of D2 receptor and may provide a more relevant means of assessing D2 occupancy. The main objective of this study was to determine if D2 receptor occupancy (RO) could be differentiated with agonist and antagonist radioligands in vivo. Agonist radioligands [(3)H]-MNPA and [(3)H]-(+)-PHNO were synthesized and compared to antagonist [(3)H]-raclopride in the in vitro binding and in vivo occupancy studies. In vivo, unanesthetized rats were pretreated with quinpirole (full agonist), aripiprazole (partial agonist), or haloperidol (antagonist) prior to administration of the agonist or antagonist radioligand. All three pretreatment compounds showed equivalent dose-dependent D2 receptor occupancy in the rat striatum with each radioligand. The in vivo receptor occupancy results suggested that the binding of quinpirole, aripiprazole, and haloperidol to the high or low affinity state of the D2 receptor could not be differentiated using radiolabeled agonists or antagonists, presumably due to a predominance of high affinity states of the D2 receptor in vivo. This hypothesis was supported in part by the in vitro binding results. Our in vitro results show that [(3)H]-MNPA binds to D2S transfected CHO cell membranes at a single high affinity site. Displacement of [(3)H]-(+)-PHNO binding by quinpirole and elimination of most [(3)H]-(+)-PHNO binding by the guanine nucleotide GppNHp in striatal membranes suggest that the majority of D2 in striatal tissue is G-protein coupled. Together, these findings suggest that D2 agonist radioligands produce in vivo receptor occupancy comparable to [(3)H]-raclopride.


Subject(s)
Apomorphine/analogs & derivatives , Brain/drug effects , Brain/metabolism , Oxazines/metabolism , Raclopride/metabolism , Receptors, Dopamine D2/metabolism , Animals , Apomorphine/metabolism , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , CHO Cells , Cricetinae , Cricetulus , Dopamine Agonists/metabolism , Dopamine Antagonists/metabolism , Dopamine D2 Receptor Antagonists , Male , Rats , Rats, Long-Evans , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...