Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
mBio ; 12(3): e0105921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34154417

ABSTRACT

Burkholderia infections can result in serious diseases with high mortality, such as melioidosis, and they are difficult to treat with antibiotics. Innate immunity is critical for cell-autonomous clearance of intracellular pathogens like Burkholderia by regulating programmed cell death. Inflammasome-dependent inflammatory cytokine release and cell death contribute to host protection against Burkholderia pseudomallei and Burkholderia thailandensis; however, the contribution of apoptosis and necroptosis to protection is not known. Here, we found that bone marrow-derived macrophages (BMDMs) lacking key components of pyroptosis died via apoptosis during infection. BMDMs lacking molecules required for pyroptosis, apoptosis, and necroptosis (PANoptosis), however, were significantly resistant to B. thailandensis-induced cell death until later stages of infection. Consequently, PANoptosis-deficient BMDMs failed to limit B. thailandensis-induced cell-cell fusion, which permits increased intercellular spread and replication compared to wild-type or pyroptosis-deficient BMDMs. Respiratory B. thailandensis infection resulted in higher mortality in PANoptosis-deficient mice than in pyroptosis-deficient mice, indicating that, in the absence of pyroptosis, apoptosis is essential for efficient control of infection in vivo. Together, these findings suggest both pyroptosis and apoptosis are necessary for host-mediated control of Burkholderia infection. IMPORTANCEBurkholderia infections result in a high degree of mortality when left untreated; therefore, understanding the host immune response required to control infection is critical. In this study, we found a hierarchical cell death program utilized by infected cells to disrupt the intracellular niche of Burkholderia thailandensis, which limits bacterial intercellular spread, host cell-cell fusion, and bacterial replication. In macrophages, combined loss of key PANoptosis components results in extensive B. thailandensis infection-induced cell-cell fusion, bacterial replication, and increased cell death at later stages of infection compared with both wild-type (WT) and pyroptosis-deficient cells. During respiratory infection, mortality was increased in PANoptosis-deficient mice compared to pyroptosis-deficient mice, identifying an essential role for multiple cell death pathways in controlling B. thailandensis infection. These findings advance our understanding of the physiological role of programmed cell death in controlling Burkholderia infection.


Subject(s)
Apoptosis/immunology , Burkholderia Infections/immunology , Burkholderia/pathogenicity , Immunity, Innate , Macrophages/microbiology , Macrophages/pathology , Animals , Burkholderia/immunology , Caspases/classification , Caspases/genetics , Caspases/immunology , Female , Male , Mice , Necroptosis/immunology , Pyroptosis/immunology
2.
Cell ; 184(1): 149-168.e17, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33278357

ABSTRACT

COVID-19 is characterized by excessive production of pro-inflammatory cytokines and acute lung damage associated with patient mortality. While multiple inflammatory cytokines are produced by innate immune cells during SARS-CoV-2 infection, we found that only the combination of TNF-α and IFN-γ induced inflammatory cell death characterized by inflammatory cell death, PANoptosis. Mechanistically, TNF-α and IFN-γ co-treatment activated the JAK/STAT1/IRF1 axis, inducing nitric oxide production and driving caspase-8/FADD-mediated PANoptosis. TNF-α and IFN-γ caused a lethal cytokine shock in mice that mirrors the tissue damage and inflammation of COVID-19, and inhibiting PANoptosis protected mice from this pathology and death. Furthermore, treating with neutralizing antibodies against TNF-α and IFN-γ protected mice from mortality during SARS-CoV-2 infection, sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other infectious and autoinflammatory diseases by limiting tissue damage/inflammation.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Interferon-gamma/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Cell Death , Disease Models, Animal , Female , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/immunology , Inflammation/pathology , Lymphohistiocytosis, Hemophagocytic/chemically induced , Male , Mice , Mice, Transgenic , THP-1 Cells
3.
bioRxiv ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33140051

ABSTRACT

The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the JAK/STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings suggest that blocking the cytokine-mediated inflammatory cell death signaling pathway identified here may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.

4.
J Biol Chem ; 295(52): 18276-18283, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33109609

ABSTRACT

Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.


Subject(s)
Apoptosis , Fungi/pathogenicity , Inflammation/pathology , Necroptosis , Pyroptosis , RNA-Binding Proteins/metabolism , Animals , Humans , Inflammasomes , Inflammation/etiology , Inflammation/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , RNA-Binding Proteins/genetics
5.
Mol Aspects Med ; 76: 100887, 2020 12.
Article in English | MEDLINE | ID: mdl-32838963

ABSTRACT

Nucleotide-binding leucine-rich repeat-containing proteins, or NOD-like receptors (NLRs), are intracellular innate immune sensors that can regulate several signaling pathways, including MyD88- and TRIF-dependent pathways. In addition to these regulatory roles, some NLRs can assemble into multimeric protein complexes known as inflammasomes. NLRP12 is a member of the NLR family that contains an N-terminal pyrin domain, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat. It has been shown to play a role in forming an inflammasome in response to specific infections, and it can also function as a regulator of inflammatory signaling. During Yersinia pestis or Plasmodium chabaudi infection, NLRP12 induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18. These NLRP12-dependent cytokines confer protection against severe infections caused by these pathogens. Conversely, during infection with Salmonella enterica serovar Typhimurium, vesicular stomatitis virus, Klebsiella pneumoniae, or Mycobacterium tuberculosis, and in colonic tumorigenesis, NLRP12 acts as a negative regulator of the NFκB and MAPK signaling pathways. NLRP12 also negatively regulates canonical and non-canonical signaling in T cells and causes exacerbated autoimmune diseases. Furthermore, NLRP12 acts as a central component in maintaining intestinal inflammation and gut homeostasis. Therefore, the ability of NLRP12 to function as an inflammasome or as a negative regulator is context-dependent. In this review, we provide an overview of the NLR family members and summarize recent insights into the roles of NLRP12 as an inflammasome and as a negative regulator.


Subject(s)
Immunity, Innate , Inflammasomes , Humans , Inflammation , Intracellular Signaling Peptides and Proteins , NF-kappa B/metabolism , Signal Transduction
6.
Article in English | MEDLINE | ID: mdl-32547960

ABSTRACT

Programmed cell death plays crucial roles in organismal development and host defense. Recent studies have highlighted mechanistic overlaps and extensive, multifaceted crosstalk between pyroptosis, apoptosis, and necroptosis, three programmed cell death pathways traditionally considered autonomous. The growing body of evidence, in conjunction with the identification of molecules controlling the concomitant activation of all three pathways by pathological triggers, has led to the development of the concept of PANoptosis. During PANoptosis, inflammatory cell death occurs through the collective activation of pyroptosis, apoptosis, and necroptosis, which can circumvent pathogen-mediated inhibition of individual death pathways. Many of the molecular details of this emerging pathway are unclear. Here, we describe the activation of PANoptosis by bacterial and viral triggers and report protein interactions that reveal the formation of a PANoptosome complex. Infection of macrophages with influenza A virus, vesicular stomatitis virus, Listeria monocytogenes, or Salmonella enterica serovar Typhimurium resulted in robust cell death and the hallmarks of PANoptosis activation. Combined deletion of the PANoptotic components caspase-1 (CASP1), CASP11, receptor-interacting serine/threonine-protein kinase 3 (RIPK3), and CASP8 largely protected macrophages from cell death induced by these pathogens, while deletion of individual components provided reduced or no protection. Further, molecules from the pyroptotic, apoptotic, and necroptotic cell death pathways interacted to form a single molecular complex that we have termed the PANoptosome. Overall, our study identifies pathogens capable of activating PANoptosis and the formation of a PANoptosome complex.


Subject(s)
Apoptosis , Necroptosis , Pyroptosis , Animals , Caspase 1 , Caspase 8 , Caspases, Initiator , Influenza A virus , Listeria monocytogenes , Macrophages , Mice , Receptor-Interacting Protein Serine-Threonine Kinases , Salmonella typhimurium , Vesicular stomatitis Indiana virus
7.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32554929

ABSTRACT

Interferon regulatory factor 1 (IRF1) regulates diverse biological functions, including modulation of cellular responses involved in tumorigenesis. Genetic mutations and altered IRF1 function are associated with several cancers. Although the function of IRF1 in the immunobiology of cancer is emerging, IRF1-specific mechanisms regulating tumorigenesis and tissue homeostasis in vivo are not clear. Here, we found that mice lacking IRF1 were hypersusceptible to colorectal tumorigenesis. IRF1 functions in both the myeloid and epithelial compartments to confer protection against AOM/DSS-induced colorectal tumorigenesis. We further found that IRF1 also prevents tumorigenesis in a spontaneous mouse model of colorectal cancer. The attenuated cell death in the colons of Irf1-/- mice was due to defective pyroptosis, apoptosis, and necroptosis (PANoptosis). IRF1 does not regulate inflammation and the inflammasome in the colon. Overall, our study identified IRF1 as an upstream regulator of PANoptosis to induce cell death during colitis-associated tumorigenesis.


Subject(s)
Colonic Neoplasms/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Interferon Regulatory Factor-1/genetics , Animals , Cell Transformation, Neoplastic/genetics , Colonic Neoplasms/metabolism , Colorectal Neoplasms/metabolism , Inflammasomes/metabolism , Interferon Regulatory Factor-1/metabolism , Mice , Necroptosis/genetics
8.
PLoS Pathog ; 15(10): e1007856, 2019 10.
Article in English | MEDLINE | ID: mdl-31648279

ABSTRACT

Toxoplasma gondii is an intracellular parasite that persistently infects the CNS and that has genetically distinct strains which provoke different acute immune responses. How differences in the acute immune response affect the CNS immune response is unknown. To address this question, we used two persistent Toxoplasma strains (type II and type III) and examined the CNS immune response at 21 days post infection (dpi). Contrary to acute infection studies, type III-infected mice had higher numbers of total CNS T cells and macrophages/microglia but fewer alternatively activated macrophages (M2s) and regulatory T cells (Tregs) than type II-infected mice. By profiling splenocytes at 5, 10, and 21 dpi, we determined that at 5 dpi type III-infected mice had more M2s while type II-infected mice had more pro-inflammatory macrophages and that these responses flipped over time. To test how these early differences influence the CNS immune response, we engineered the type III strain to lack ROP16 (IIIΔrop16), the polymorphic effector protein that drives the early type III-associated M2 response. IIIΔrop16-infected mice showed a type II-like neuroinflammatory response with fewer infiltrating T cells and macrophages/microglia and more M2s and an unexpectedly low CNS parasite burden. At 5 dpi, IIIΔrop16-infected mice showed a mixed inflammatory response with more pro-inflammatory macrophages, M2s, T effector cells, and Tregs, and decreased rates of infection of peritoneal exudative cells (PECs). These data suggested that type III parasites need the early ROP16-associated M2 response to avoid clearance, possibly by the Immunity-Related GTPases (IRGs), which are IFN-γ- dependent proteins essential for murine defenses against Toxoplasma. To test this possibility, we infected IRG-deficient mice and found that IIIΔrop16 parasites now maintained parental levels of PECs infection. Collectively, these studies suggest that, for the type III strain, rop16III plays a key role in parasite persistence and influences the subacute CNS immune response.


Subject(s)
Central Nervous System/immunology , Macrophages/immunology , Protein-Tyrosine Kinases/immunology , Protozoan Proteins/immunology , T-Lymphocytes/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology , Animals , Central Nervous System/parasitology , GTP Phosphohydrolases/genetics , Mice , Mice, Knockout , Microglia/metabolism , Protein-Tyrosine Kinases/genetics , Protozoan Proteins/genetics , Toxoplasma/classification , Toxoplasma/genetics
9.
PLoS Pathog ; 12(2): e1005447, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26895155

ABSTRACT

Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma's primary in vivo target.


Subject(s)
Astrocytes/parasitology , Brain/parasitology , Neurons/parasitology , Toxoplasma , Toxoplasmosis/parasitology , Animals , Cells, Cultured , Disease Models, Animal , Interferon-gamma/metabolism , Intracellular Space/parasitology , Mice
10.
Immun Inflamm Dis ; 3(2): 71-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26029367

ABSTRACT

Alveolar macrophages play a critical role in initiating the immune response to inhaled pathogens and have been shown to be the first cell type infected following intranasal inoculation with several pathogens, including Francisella tularensis. In an attempt to further dissect the role of alveolar macrophages in the immune response to Francisella, we selectively depleted alveolar macrophages using CD11c.DOG mice. CD11c.DOG mice express the diphtheria toxin receptor (DTR) under control of the full CD11c promoter. Because mice do not express DTR, tissue restricted expression of the primate DTR followed by treatment with diphtheria toxin (DT) has been widely used as a tool in immunology to examine the effect of acute depletion of a specific immune subset following normal development. We successfully depleted alveolar macrophages via intranasal administration of DT. However, alveolar macrophage depletion was accompanied by many other changes to the cellular composition and cytokine/chemokine milieu in the lung that potentially impact innate and adaptive immune responses. Importantly, we observed a transient influx of neutrophils in the lung and spleen. Our experience serves as a cautionary note to other researchers using DTR mice given the complex changes that occur following DT treatment that must be taken into account when analyzing data.

11.
Infect Immun ; 82(6): 2504-10, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24686053

ABSTRACT

The adaptive immune response to Francisella tularensis is dependent on the route of inoculation. Intradermal inoculation with the F. tularensis live vaccine strain (LVS) results in a robust Th1 response in the lungs, whereas intranasal inoculation produces fewer Th1 cells and instead many Th17 cells. Interestingly, bacterial loads in the lungs are similar early after inoculation by these two routes. We hypothesize that the adaptive immune response is influenced by local events in the lungs, such as the type of cells that are first infected with Francisella. Using fluorescence-activated cell sorting, we identified alveolar macrophages as the first cell type infected in the lungs of mice intranasally inoculated with F. novicida U112, LVS, or F. tularensis Schu S4. Following bacterial dissemination from the skin to the lung, interstitial macrophages or neutrophils are infected. Overall, we identified the early interactions between Francisella and the host following two different routes of inoculation.


Subject(s)
Francisella tularensis/immunology , Host-Pathogen Interactions/immunology , Lung/microbiology , Tularemia/immunology , Adaptive Immunity , Administration, Intranasal , Animals , Bacterial Load , Colony Count, Microbial , Disease Models, Animal , Lung/immunology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Neutrophils/microbiology , Pulmonary Alveoli/microbiology , Tularemia/microbiology
12.
Infect Immun ; 81(6): 2028-42, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23529616

ABSTRACT

Bacterial attenuation is typically thought of as reduced bacterial growth in the presence of constant immune pressure. Infection with Francisella tularensis elicits innate and adaptive immune responses. Several in vivo screens have identified F. tularensis genes necessary for virulence. Many of these mutations render F. tularensis defective for intracellular growth. However, some mutations have no impact on intracellular growth, leading us to hypothesize that these F. tularensis mutants are attenuated because they induce an altered host immune response. We were particularly interested in the F. tularensis LVS (live vaccine strain) clpB (FTL_0094) mutant because this strain was attenuated in pneumonic tularemia yet induced a protective immune response. The attenuation of LVS clpB was not due to an intracellular growth defect, as LVS clpB grew similarly to LVS in primary bone marrow-derived macrophages and a variety of cell lines. We therefore determined whether LVS clpB induced an altered immune response compared to that induced by LVS in vivo. We found that LVS clpB induced proinflammatory cytokine production in the lung early after infection, a process not observed during LVS infection. LVS clpB provoked a robust adaptive immune response similar in magnitude to that provoked by LVS but with increased gamma interferon (IFN-γ) and interleukin-17A (IL-17A) production, as measured by mean fluorescence intensity. Altogether, our results indicate that LVS clpB is attenuated due to altered host immunity and not an intrinsic growth defect. These results also indicate that disruption of a nonessential gene(s) that is involved in bacterial immune evasion, like F. tularensis clpB, can serve as a model for the rational design of attenuated vaccines.


Subject(s)
Bacterial Vaccines/immunology , Francisella tularensis/genetics , Tularemia/prevention & control , Animals , Cell Line , Francisella tularensis/immunology , Francisella tularensis/pathogenicity , Gene Expression Regulation/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/physiology , Vaccines, Attenuated/immunology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...