Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
2.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834395

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine, MEL), its kynurenic (N1-acetyl-N2-formyl-5-methoxykynurenine, AFMK) and indolic derivatives (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) are endogenously produced in human epidermis. Melatonin, produced by the pineal gland, brain and peripheral organs, displays a diversity of physiological functions including anti-inflammatory, immunomodulatory, and anti-tumor capacities. Herein, we assessed their regulatory effect on melanogenesis using amelanotic (A375, Sk-Mel-28) and highly pigmented (MNT-1, melanotic) human melanoma cell lines. We discovered that subjected compounds decrease the downstream pathway of melanin synthesis by causing a significant drop of cyclic adenosine monophosphate (cAMP) level, the microphthalmia-associated transcription factor (MITF) and resultant collapse of tyrosinase (TYR) activity, and melanin content comparatively to N-phenylthiourea (PTU, a positive control). We observed a reduction in pigment in melanosomes visualized by the transmission electron microscopy. Finally, we assessed the role of G-protein-coupled seven-transmembrane-domain receptors. Obtained results revealed that nonselective MT1 and MT2 receptor antagonist (luzindole) or selective MT2 receptor antagonist (4-P-PDOT) did not affect dysregulation of the melanin pathway indicating a receptor-independent mechanism. Our findings, together with the current state of the art, provide a convenient experimental model to study the complex relationship between metabolites of melatonin and the control of pigmentation serving as a future and rationale strategy for targeted therapies of melanoma-affected patients.


Subject(s)
Melanoma , Melatonin , Humans , Melatonin/metabolism , Melanins , 5-Methoxytryptamine , Receptor, Melatonin, MT2 , Melanoma/metabolism , Monophenol Monooxygenase
3.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298186

ABSTRACT

Ceramides are epidermal lipids important for normal skin barrier function. Reduced Ceramide content is associated with atopic dermatitis (AD). House dust mite (HDM) has been localized in AD skin where it plays an exacerbator role. We set to examine the impact of HDM on skin integrity and the effect of three separate Ceramides (AD™, DS, Y30) on HDM-induced cutaneous damage. The effect was tested in vitro on primary human keratinocytes and ex vivo on skin explants. HDM (100 µg/mL) decreased the expression of adhesion protein E-cadherin, supra-basal (K1, K10) and basal (K5, K14) keratins and increased matrix metallopeptidase (MMP)-9 activity. The presence of Ceramide AD™ in topical cream inhibited HDM-induced E-cadherin and keratin destruction and dampened MMP-9 activity ex vivo which was not seen for the control cream or cream containing DS or Y30 Ceramides. The efficacy of Ceramide AD™ was tested in a clinical setting on moderate to very dry skin (as surrogate for environment-induced skin damage). When applied topically for 21 days, Ceramide AD™ significantly reduced transepidermal water loss (TEWL) in patients with very dry skin compared to their TEWL baseline data. Our study demonstrates Ceramide AD™ cream to be effective in restoring skin homeostasis and barrier function in damaged skin and warrants testing in larger clinical trials for possible treatment of AD and xerosis.


Subject(s)
Ceramides , Dermatitis, Atopic , Animals , Humans , Ceramides/pharmacology , Pyroglyphidae , Skin/metabolism , Dermatitis, Atopic/metabolism , Epidermis/metabolism , Dermatophagoides pteronyssinus , Keratins/pharmacology , Emollients/pharmacology
4.
Br J Dermatol ; 189(3): 312-327, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37140010

ABSTRACT

BACKGROUND: Vitiligo is an autoimmune skin disorder characterized by loss of melanocytes. Protease-mediated disruption of junctions between keratinocytes and/or keratinocyte intrinsic dysfunction may directly contribute to melanocyte loss. House dust mite (HDM), an environmental allergen with potent protease activity, contributes to respiratory and gut disease but also to atopic dermatitis and rosacea. OBJECTIVES: To verify if HDM can contribute to melanocyte detachment in vitiligo and if so, by which mechanism(s). METHODS: Using primary human keratinocytes, human skin biopsies from healthy donors and patients with vitiligo, and 3D reconstructed human epidermis, we studied the effect of HDM on cutaneous immunity, tight and adherent junction expression and melanocyte detachment. RESULTS: HDM increased keratinocyte production of vitiligo-associated cytokines and chemokines and increased expression of toll-like receptor (TLR)-4. This was associated with increased in situ matrix-metalloproteinase (MMP)-9 activity, reduced cutaneous expression of adherent protein E-cadherin, increased soluble E-cadherin in culture supernatant and significantly increased number of suprabasal melanocytes in the skin. This effect was dose-dependent and driven by cysteine protease Der p1 and MMP-9. Selective MMP-9 inhibitor, Ab142180, restored E-cadherin expression and inhibited HDM-induced melanocyte detachment. Keratinocytes from patients with vitiligo were more sensitive to HDM-induced changes than healthy keratinocytes. All results were confirmed in a 3D model of healthy skin and in human skin biopsies. CONCLUSIONS: Our results highlight that environmental mite may act as an external source of pathogen-associated molecular pattern molecules in vitiligo and topical MMP-9 inhibitors may be useful therapeutic targets. Whether HDM contributes to the onset of flares in vitiligo remains to be tested in carefully controlled trials.


Subject(s)
Vitiligo , Animals , Humans , Vitiligo/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/pharmacology , Pyroglyphidae , Melanocytes/metabolism , Keratinocytes/metabolism , Cadherins/metabolism
5.
Exp Dermatol ; 31(11): 1764-1778, 2022 11.
Article in English | MEDLINE | ID: mdl-36054319

ABSTRACT

Psoriasis is a chronic inflammatory disease whereby long-term disease control remains a challenge for the patients. Latest evidence suggests that combined topical treatment with steroids and vitamin D analogue foam (Calcipotriol/Betamethasone) is efficient in long-term management of the disease and reducing the number of relapses. Its effects on cellular inflammation and cytokine production remain to be explored. We set out to examine the effect of topical therapies on cellular infiltrate and cytokine profile in the lesional skin of psoriasis patients. This was a monocentric, double-blind, randomized trial with 30 patients. Patients were treated with the combined Calcipotriol/Betamethasone foam, Betamethasone foam alone, Clobetasol Propionate ointment or placebo. 4 mm skin biopsies from lesional and non-lesional sites were taken before and 4 weeks after treatment. Cellular infiltrate, IFNγ and IL-17 were studied by immunofluorescence. Each patient was their own control. Evolution in skin inflammation was studied in parallel with changes in patient's epidermal thickness and their tPASI clinical score. Lesional skin was characterized by increased epidermal thickness, increased number of IL-17 and IFNγ producing CD8+ T cells, NK cells and neutrophils. All treatment reduced epidermal thickness and improved patients tPASI scores. Only the combined Calcipotriol/Betamethasone foam completely abolished epidermal and dermal influx of CD8+ T cells, reduced number of CD8 + IFNγ+ cells (but not CD8 + IL-17+ cells) and significantly reduced the number of MPO+ neutrophils which were predominantly IL-17+. None of the treatments had effect on NK cells. We have shown the combined topical treatment with Calcipotriol/Betamethasone foam to be effective in reducing cellular influx into lesional skin of psoriasis patients and this effect to be superior to emollient or Betamethasone alone. Its previously described efficacy in the clinic may be attributed to its unique and rapid ability to inhibit both adaptive CD8+ T cell and innate immune neutrophilia influx into the skin, which was not observed for the other treatments.


Subject(s)
Interleukin-17 , Psoriasis , Humans , Emollients/therapeutic use , Ointments/therapeutic use , Calcitriol , Psoriasis/drug therapy , Betamethasone/therapeutic use , Inflammation/drug therapy
7.
J Invest Dermatol ; 142(2): 425-434, 2022 02.
Article in English | MEDLINE | ID: mdl-34310951

ABSTRACT

The potential role of CLEC12B, a gene predominantly expressed by skin melanocytes discovered through transcriptomic analysis, in melanoma is unknown. In this study, we show that CLEC12B expression is lower in melanoma and melanoma metastases than in melanocytes and benign melanocytic lesions and that its decrease correlates with poor prognosis. We further show that CLEC12B recruits SHP2 phosphatase through its immunoreceptor tyrosine-based inhibition motif domain, inactivates signal transducer and activator of transcription 1/3/5, increases p53/p21/p27 expression/activity, and modulates melanoma cell proliferation. The growth of human melanoma cells overexpressing CLEC12B in nude mice after subcutaneous injection is significantly decreased compared with that in the vehicle control group and is associated with decreased signal transducer and activator of transcription 3 phosphorylation and increased p53 levels in the tumors. Reducing the level of CLEC12B had the opposite effect. We show that CLEC12B represses the activation of the signal transducer and activator of transcription pathway and negatively regulates the cell cycle, providing a proliferative asset to melanoma cells.


Subject(s)
Lectins, C-Type/metabolism , Melanoma/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, Mitogen/metabolism , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Datasets as Topic , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Melanoma/mortality , Melanoma/pathology , Mice , RNA-Seq , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Xenograft Model Antitumor Assays
8.
J Invest Dermatol ; 142(7): 1858-1868.e8, 2022 07.
Article in English | MEDLINE | ID: mdl-34896119

ABSTRACT

Pigmentation of the human skin is a complex process regulated by many genes. However, only a few have a profound impact on melanogenesis. Transcriptome analysis of pigmented skin compared with analysis of vitiligo skin devoid of melanocytes allowed us to unravel CLEC12B as a melanocytic gene. We showed that CLEC12B, a C-type lectin receptor, is highly expressed in melanocytes and that its expression is decreased in dark skin compared with that in white skin. CLEC12B directly recruits and activates SHP1 and SHP2 through its immunoreceptor tyrosine-based inhibitory motif domain and promotes CRE-binding protein degradation, leading to the downregulation of the downstream MITF pathway. CLEC12B ultimately controls melanin production and pigmentation in vitro and in a model of reconstructed human epidermis. The identification of CLEC12B in melanocytes shows that C-type lectin receptors exert function beyond immunity and inflammation. It also provides insights into the understanding of melanocyte biology and regulation of melanogenesis.


Subject(s)
Lectins, C-Type , Melanocytes , Receptors, Mitogen , Skin Pigmentation , Epidermis/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Melanins/metabolism , Melanocytes/metabolism , Receptors, Mitogen/metabolism , Skin/metabolism , Skin Pigmentation/genetics
9.
Cancer Res ; 81(14): 3806-3821, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34099492

ABSTRACT

Overcoming acquired drug resistance is a primary challenge in cancer treatment. Notably, more than 50% of patients with BRAFV600E cutaneous metastatic melanoma (CMM) eventually develop resistance to BRAF inhibitors. Resistant cells undergo metabolic reprogramming that profoundly influences therapeutic response and promotes tumor progression. Uncovering metabolic vulnerabilities could help suppress CMM tumor growth and overcome drug resistance. Here we identified a drug, HA344, that concomitantly targets two distinct metabolic hubs in cancer cells. HA344 inhibited the final and rate-limiting step of glycolysis through its covalent binding to the pyruvate kinase M2 (PKM2) enzyme, and it concurrently blocked the activity of inosine monophosphate dehydrogenase, the rate-limiting enzyme of de novo guanylate synthesis. As a consequence, HA344 efficiently targeted vemurafenib-sensitive and vemurafenib-resistant CMM cells and impaired CMM xenograft tumor growth in mice. In addition, HA344 acted synergistically with BRAF inhibitors on CMM cell lines in vitro. Thus, the mechanism of action of HA344 provides potential therapeutic avenues for patients with CMM and a broad range of different cancers. SIGNIFICANCE: Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Carrier Proteins/antagonists & inhibitors , IMP Dehydrogenase/antagonists & inhibitors , Melanoma/drug therapy , Membrane Proteins/antagonists & inhibitors , Ribonucleotides/pharmacology , Skin Neoplasms/drug therapy , Aged , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Melanoma/enzymology , Melanoma/pathology , Mice , Mice, Nude , Random Allocation , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Thyroid Hormones , Xenograft Model Antitumor Assays , Thyroid Hormone-Binding Proteins , Melanoma, Cutaneous Malignant
10.
Front Immunol ; 12: 613056, 2021.
Article in English | MEDLINE | ID: mdl-33936032

ABSTRACT

Multiple factors are involved in the process leading to melanocyte loss in vitiligo including environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity. This review aims to highlight current knowledge on how danger signals released by stressed epidermal cells in a predisposed patient can trigger the innate immune system and initiate a cascade of events leading to an autoreactive immune response, ultimately contributing to melanocyte disappearance in vitiligo. We will explore the genetic data available, the specific role of damage-associated-molecular patterns, and pattern-recognition receptors, as well as the cellular players involved in the innate immune response. Finally, the relevance of therapeutic strategies targeting this pathway to improve this inflammatory and autoimmune condition is also discussed.


Subject(s)
Immunity, Innate/drug effects , Skin/drug effects , Skin/immunology , Stress, Physiological/drug effects , Vitiligo/etiology , Animals , Biomarkers , Combined Modality Therapy , Disease Management , Disease Susceptibility/immunology , Genetic Predisposition to Disease , Humans , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Receptors, Pattern Recognition/metabolism , Signal Transduction , Skin/pathology , Vitiligo/drug therapy , Vitiligo/metabolism , Vitiligo/pathology
11.
Antioxidants (Basel) ; 10(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920561

ABSTRACT

We investigated the effects of melatonin and its selected metabolites, i.e., N1-Acetyl-N2-formyl-5-methoxykynurenamine (AFMK) and 6-hydroxymelatonin (6(OH)Mel), on cultured human epidermal keratinocytes (HEKs) to assess their homeostatic activities with potential therapeutic implications. RNAseq analysis revealed a significant number of genes with distinct and overlapping patterns, resulting in common regulation of top diseases and disorders. Gene Set Enrichment Analysis (GSEA), Reactome FIViZ, and Ingenuity Pathway Analysis (IPA) showed overrepresentation of the p53-dependent G1 DNA damage response gene set, activation of p53 signaling, and NRF2-mediated antioxidative pathways. Additionally, GSEA exhibited an overrepresentation of circadian clock and antiaging signaling gene sets by melatonin derivatives and upregulation of extension of telomere signaling in HEKs, which was subsequently confirmed by increased telomerase activity in keratinocytes, indicating possible antiaging properties of metabolites of melatonin. Furthermore, Gene Ontology (GO) showed the activation of a keratinocyte differentiation program by melatonin, and GSEA indicated antitumor and antilipidemic potential of melatonin and its metabolites. IPA also indicated the role of Protein Kinase R (PKR) in interferon induction and antiviral response. In addition, the test compounds decreased lactate dehydrogenase A (LDHA) and lactate dehydrogenase C (LDHC) gene expression. These results were validated by qPCR and by Seahorse metabolic assay with significantly decreased glycolysis and lactate production under influence of AFMK or 6(OH)Mel in cells with a low oxygen consumption rate. In summary, melatonin and its metabolites affect keratinocytes' functions via signaling pathways that overlap for each tested molecule with some distinctions.

12.
J Invest Dermatol ; 141(9): 2280-2290, 2021 09.
Article in English | MEDLINE | ID: mdl-33771527

ABSTRACT

Vitiligo is an autoimmune disease characterized by patchy, white skin owing to melanocyte loss. Commensal cutaneous or gut dysbiosis has been linked to various dermatological disorders. In this study, we studied the skin and gut microbiota of patients with vitiligo compared with those of healthy controls. We obtained swabs and biopsies from both lesional and nonlesional skin as well as stool and blood samples from each individual. We detected reduced richness and diversity of microbiota in the stools of subjects with vitiligo compared with the stools of the controls (P < 0.01). Skin swabs had greater α-diversity than biopsies (P < 0.001); swabs from lesional sites were primarily depleted of Staphylococcus compared with those from nonlesional sites (P < 0.02). Sampling deeper layers from the same patients showed differences in both α- and ß-diversity between samples with decreased richness and distribution of species (P < 0.01) in the lesional site. Biopsy microbiota from the lesional skin had distinct microbiota composition, which was depleted of protective Bifidobacterium and Bacteroides but was enriched in Proteobacteria, Streptococcus, Mycoplasma, and mtDNA (P < 0.001); the latter increased in the same patients with heightened innate immunity and stress markers in their blood (P < 0.05). These data describe vitiligo-specific cutaneous and gut microbiota and a link between skin dysbiosis, mitochondrial damage, and immunity in patients with vitiligo.


Subject(s)
DNA, Mitochondrial/genetics , Dysbiosis/microbiology , Gastrointestinal Microbiome/immunology , Mitochondria/metabolism , RNA, Ribosomal, 16S/genetics , Skin/immunology , Vitiligo/microbiology , Aged , Biodiversity , Dysbiosis/immunology , Female , Gastrointestinal Microbiome/genetics , Humans , Immunity, Innate , Male , Middle Aged , Skin/microbiology , Vitiligo/immunology
13.
J Pineal Res ; 70(3): e12728, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33650175

ABSTRACT

Melanoma is a leading cause of cancer deaths worldwide. Although immunotherapy has revolutionized the treatment for some patients, resistance towards therapy and unwanted side effects remain a problem for numerous individuals. Broad anti-cancer activities of melatonin are recognized; however, additional investigations still need to be elucidated. Herein, using various human melanoma cell models, we explore in vitro the new insights into the regulation of melanoma by melatonin and its metabolites which possess, on the other side, high safety profiles and biological meaningful. In this study, using melanotic (MNT-1) and amelanotic (A375, G361, Sk-Mel-28) melanoma cell lines, the comparative oncostatic responses, the impact on melanin content (for melanotic MNT-1 melanoma cells) as well as the mitochondrial function controlled by melatonin, its precursor (serotonin), a kynuric (N1 -acetyl-N2 -formyl-5-methoxykynuramine, AFMK) and indolic pathway (6-hydroxymelatonin, 6(OH)MEL and 5-methoxytryptamine, 5-MT) metabolites were assessed. Namely, significant disturbances were observed in bioenergetics as follows: (i) uncoupling of oxidative phosphorylation (OXPHOS), (ii) attenuation of glycolysis, (iii) dissipation of mitochondrial transmembrane potential (mtΔΨ) accompanied by (iv) massive generation of reactive oxygen species (ROS), and (v) decrease of glucose uptake. Collectively, these results together with previously published reports provide a new biological potential and make an imperative to consider using melatonin or its metabolites for complementary future treatments of melanoma-affected patients; however, these associations should be additionally investigated in clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Energy Metabolism/drug effects , Melanoma/drug therapy , Melatonin/pharmacology , Mitochondria/drug effects , Skin Neoplasms/drug therapy , Antineoplastic Agents/metabolism , Biotransformation , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Melanoma/metabolism , Melanoma/pathology , Melatonin/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/drug effects , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
15.
Mol Cancer ; 20(1): 12, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413419

ABSTRACT

Resistances to immunotherapies remains a major hurdle towards a cure for melanoma in numerous patients. An increase in the mesenchymal phenotype and a loss of differentiation have been clearly associated with resistance to targeted therapies. Similar phenotypes have been more recently also linked to resistance to immune checkpoint therapies. We demonstrated here that the loss of MIcrophthalmia associated Transcription Factor (MITF), a pivotal player in melanocyte differentiation, favors the escape of melanoma cells from the immune system. We identified Integrin beta-like protein 1 (ITGBL1), a secreted protein, upregulated in anti-PD1 resistant patients and in MITFlow melanoma cells, as the key immunomodulator. ITGBL1 inhibited immune cell cytotoxicity against melanoma cells by inhibiting NK cells cytotoxicity and counteracting beneficial effects of anti-PD1 treatment, both in vitro and in vivo. Mechanistically, MITF inhibited RUNX2, an activator of ITGBL1 transcription. Interestingly, VitaminD3, an inhibitor of RUNX2, improved melanoma cells to death by immune cells. In conclusion, our data suggest that inhibition of ITGBL1 might improve melanoma response to immunotherapies.


Subject(s)
Carcinogenesis/pathology , Cytotoxicity, Immunologic , Immunologic Factors/metabolism , Integrin beta1/metabolism , Killer Cells, Natural/immunology , Melanoma/immunology , Animals , Cell Line, Tumor , Cell Proliferation , Melanoma/pathology , Mice, Inbred C57BL , Microphthalmia-Associated Transcription Factor/metabolism
16.
Cell Death Dis ; 12(1): 64, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431809

ABSTRACT

In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Melanoma/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Death , Cell Proliferation , Humans , Melanoma/pathology , Signal Transduction
17.
J Allergy Clin Immunol ; 145(5): 1416-1429.e11, 2020 05.
Article in English | MEDLINE | ID: mdl-31954775

ABSTRACT

BACKGROUND: Successful prevention of food allergy requires the identification of the factors adversely affecting the capacity to develop oral tolerance to food antigen in early life. OBJECTIVES: This study sought to determine whether oral exposure to Dermatophagoides pteronyssinus through breast milk affects gut mucosal immunity with long-term effects on IgE-mediated food allergy susceptibility. METHODS: Gut immunity was explored in 2-week-old mice breast-fed by mothers exposed to D pteronyssinus, protease-inactivated D pteronyssinus, or to PBS during lactation. We further analyzed oral tolerance to a bystander food allergen, ovalbumin (OVA). In a proof-of-concept study, Der p 1 and OVA levels were determined in 100 human breast milk samples and the association with prevalence of IgE-mediated egg allergy at 1 year was assessed. RESULTS: Increased permeability, IL-33 levels, type 2 innate lymphoid cell activation, and Th2 cell differentiation were found in gut mucosa of mice nursed by mothers exposed to D pteronyssinus compared with PBS. This pro-Th2 gut mucosal environment inhibited the induction of antigen-specific FoxP3 regulatory T cells and the prevention of food allergy by OVA exposure through breast milk. In contrast, protease-inactivated D pteronyssinus had no effect on offspring gut mucosal immunity. Based on the presence of Der p 1 and/or OVA in human breast milk, we identified groups of lactating mothers, which mirror the ones found in mice to be responsible for different egg allergy risk. CONCLUSIONS: This study highlights an unpredicted potential risk factor for the development of food allergy, that is, D pteronyssinus allergens in breast milk, which disrupt gut immune homeostasis and prevents oral tolerance induction to bystander food antigen through their protease activity.


Subject(s)
Allergens/administration & dosage , Antigens, Dermatophagoides/administration & dosage , Arthropod Proteins/administration & dosage , Cysteine Endopeptidases/administration & dosage , Dermatophagoides pteronyssinus/immunology , Egg Hypersensitivity/immunology , Milk/immunology , Ovalbumin/administration & dosage , Administration, Oral , Adult , Animals , CD4-Positive T-Lymphocytes , Disease Susceptibility , Double-Blind Method , Female , Humans , Immunoglobulin E/immunology , Infant, Newborn , Interleukin-33 , Intestine, Small/immunology , Male , Mice, Inbred BALB C , Mice, Transgenic , Pregnancy
19.
Nat Commun ; 10(1): 2178, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097717

ABSTRACT

T-cells play a crucial role in progression of autoimmunity, including vitiligo, yet the initial steps triggering their activation and tissue damage remain unknown. Here we demonstrate increased presence of type-1 innate lymphoid cells (NK and ILC1)-producing interferon gamma (IFNγ) in the blood and in non-lesional skin of vitiligo patients. Melanocytes of vitiligo patients have strong basal expression of chemokine-receptor-3 (CXCR3) isoform B which is directly regulated by IFNγ. CXCR3B activation by CXCL10 at the surface of cultured human melanocytes induces their apoptosis. The remaining melanocytes, activated by the IFNγ production, express co-stimulatory markers which trigger T-cell proliferation and subsequent anti-melanocytic immunity. Inhibiting the CXCR3B activation prevents this apoptosis and the further activation of T cells. Our results emphasize the key role of CXCR3B in apoptosis of melanocytes and identify CXCR3B as a potential target to prevent and to treat vitiligo by acting at the early stages of melanocyte destruction.


Subject(s)
Autoimmunity , Melanocytes/immunology , Receptors, CXCR3/metabolism , T-Lymphocytes/immunology , Vitiligo/immunology , Adult , Aged , Apoptosis/immunology , Biopsy , Cells, Cultured , Chemokine CXCL10/metabolism , Female , Humans , Immunity, Innate , Interferon-gamma/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation , Male , Melanocytes/metabolism , Middle Aged , Primary Cell Culture , Protein Isoforms/immunology , Protein Isoforms/metabolism , Receptors, CXCR3/immunology , Skin/cytology , Skin/pathology , T-Lymphocytes/metabolism , Vitiligo/blood , Vitiligo/pathology
20.
Cell Death Dis ; 9(5): 527, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29743521

ABSTRACT

Melanoma is one of the most lethal cancers when it reaches a metastatic stage. Despite advancements in targeted therapies (BRAF inhibitors) or immunotherapies (anti-CTLA-4 or anti-PD1), most patients with melanoma will need additional treatment. Thus, there is an urgent need to develop new therapeutical approaches to bypass resistance and achieve more prolonged responses. In this context, we were interested in E2F1, a transcription factor that plays a major role in the control of cell cycle under physiological and pathological conditions. Here we confirmed that E2F1 is highly expressed in melanoma cells. Inhibition of E2F1 activity further increased melanoma cell death and senescence, both in vitro and in vivo. Moreover, blocking E2F1 also induced death of melanoma cells resistant to BRAF inhibitors. In conclusion, our studies suggest that targeting the E2F1 signaling pathway may be therapeutically relevant for melanoma.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Cell Death/drug effects , E2F1 Transcription Factor , Melanoma, Experimental , Signal Transduction/drug effects , Animals , Cell Line, Tumor , E2F1 Transcription Factor/antagonists & inhibitors , E2F1 Transcription Factor/metabolism , Female , Humans , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice, Nude , Neoplasm Metastasis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...