Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6613): 1444-1447, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137033

ABSTRACT

Large volcanic eruptions, although rare events, can influence the chemistry and the dynamics of the stratosphere for several years after the eruption. Here we show that the eruption of the submarine volcano Hunga Tonga-Hunga Ha'apai on 15 January 2022 injected at least 50 teragrams of water vapor directly into the stratosphere. This event raised the amount of water vapor in the developing stratospheric plume by several orders of magnitude and possibly increased the amount of global stratospheric water vapor by more than 5%. This extraordinary eruption may have initiated an atmospheric response different from that of previous well-studied large volcanic eruptions.

2.
Geophys Res Lett ; 48(5): e2020GL091987, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33785974

ABSTRACT

Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000-2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one-quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry-climate model simulations, which assume emissions reductions similar to those caused by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020.

3.
Sci Total Environ ; 749: 141460, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32814203

ABSTRACT

Two and a half years of multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements of nitrogen dioxide (NO2), formaldehyde (HCHO) and glyoxal (CHOCHO) are presented alongside in-situ ozone (O3) measurements in Melbourne, Australia. Seasonal and diurnal cycles, vertical profiles and relationships with key meteorological variables are provided. NO2 and CHOCHO were found at highest concentration for low wind speeds implying that their sources were predominantly localised and anthropogenic. HCHO showed an exponential relationship with temperature and a strong wind direction dependence from the northern and eastern sectors, and therefore most likely originated from oxidation of biogenic volatile organic compounds (VOCs) from surrounding forested and rural areas. The glyoxal:formaldehyde ratio (Rgf), reported for the first time in Australia, was consistently high compared to values elsewhere in the world with a mean of 0.105 ± 0.0503 and tended to increase with increasing anthropogenic influence. The HCHO:NO2 ratio (Rfn) was used to characterise tropospheric ozone formation conditions. A strong relationship was found between high temperature, low Rgf, high Rfn and high ozone surface concentrations. Therefore, we propose that both Rgf and Rfn may be useful indicators of tropospheric ozone production regimes and concentrations. The Rfn showed that the vast majority of high ozone production episodes occurred under NOx-limited conditions, suggesting that surface ozone pollution events in Melbourne could be curtailed using NOx emission controls.

4.
Photochem Photobiol ; 91(5): 1237-46, 2015.
Article in English | MEDLINE | ID: mdl-26147793

ABSTRACT

Monitoring ambient solar UVR levels provides information on how much there is in both real time and historically. Quality assurance of ambient measurements of solar UVR is critical to ensuring accuracy and stability and this can be achieved by regular intercomparisons of spectral measurement systems with those of other organizations. In October and November of 2013 a solar UVR spectroradiometer from Public Health England (PHE) was brought to Melbourne for a campaign of intercomparisons with a new Bentham spectrometer of Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) and one at the Australian Bureau of Meteorology (BOM), supported by New Zealand's National Institute for Water and Atmosphere (NIWA). Given all three spectroradiometers have calibrations that are traceable to various national standards, the intercomparison provides a chance to determine measurement uncertainties and traceability that support UV measurement networks in Australia, New Zealand and the UK. UV Index measurements from all three systems were compared and ratios determined for clear sky conditions when the scans from each instrument were within 2 min of each other. While wavelengths below 305 nm showed substantial differences between the PHE unit and the two other systems, overall the intercomparison results were encouraging, with mean differences in measured UV Index between the BOM/NIWA and those of PHE and ARPANSA of <0.1% and 7.5%, respectively.


Subject(s)
Environmental Monitoring/instrumentation , Ultraviolet Rays , Australia , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...