Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 95(9): 1194, 2011 Sep.
Article in English | MEDLINE | ID: mdl-30732028

ABSTRACT

Fusarium dry rot of potato (Solanum tuberosum L.) is a postharvest disease caused by several Fusarium species and is of worldwide importance. Thirteen species of Fusarium have been implicated in fungal dry rots of potatoes worldwide. Among them, eight species have been reported in the northern United States (2). In Michigan potato production, F. sambucinum was the predominant species reported to be affecting seed potato in storage and causing seed piece decay after planting (3). Some previous identifications of F. sambucinum as dry rot may have been F. torulosum since F. torulosum was previously classified within F. sambucinum (4). To further investigate this, dry rot symptomatic tubers were collected from Michigan seed lots in the summers of 2009 and 2010. Small sections from the margins of necrotic regions were cut with a scalpel, surface sterilized in 0.5% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate and incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium species were transferred onto water agar, and single hyphal tips from actively growing isolates were removed and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Among the Fusarium isolates obtained, five isolates were identified as F. torulosum (GenBank Accessions Nos. JF803658-JF803660). Identification was based on colony and conidial morphology on PDA and CLA, respectively. These features included slow growth (2.8 ± 0.2 cm in 5 days), white mycelium that became pigmented with age, narrow concentric rings, red or white pigmentation on agar, macroconidia (32.4 ± 0.4 µm average length) with five septa, a pointed apical cell, and a foot-shaped basal cell (4). The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region (1). The Fusarium-ID.v (1) and the NCBI database were used to obtain the closest match (99%) to previously sequenced materials (GenBank Accession No. AJ543611). Pathogenicity testing was done on disease-free potato tubers cv. Red Norland. Tubers were surface sterilized for 10 min in 0.5% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 µl of a conidial suspension (106 conidia/ml) made from F. torulosum cultures grown on PDA for 7 to 10 days. Control tubers were injected with 20 µl of sterile distilled water. All tubers inoculated with F. torulosum developed typical potato dry rot symptoms consisting of a brown and dry decay. There was no disease incidence on the control tubers. F. torulosum was reisolated from the symptomatic tubers. To our knowledge, this is the first report of F. torulosum causing potato dry rot in the United States. References: (1) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) L. E. Hanson et al. Phytopathology 86:378, 1996. (3) M. L. Lacy and R. Hammerschmidt. Fusarium dry rot. Extension Bulletin. Retrieved from http://web1.msue.msu.edu/msue/iac/onlinepubs/pubs/E/E2448POT , 23 May 2010. (4) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Wiley-Blackwell, Hoboken, NJ, 2006.

2.
Plant Dis ; 95(2): 228, 2011 Feb.
Article in English | MEDLINE | ID: mdl-30743445

ABSTRACT

Fusarium dry rot of potato (Solanum tuberosum) is a postharvest disease caused by several Fusarium spp. Dry rot is managed primarily by reducing tuber bruising and promoting rapid wound healing. Dry rot symptomatic tubers were collected from Michigan seed lots in 2009 and 2010. The isolates may not have been exposed to fludioxonil because currently applications are restricted to seed not intended for seed production (3). Small sections were cut from the margins of necrotic regions with a scalpel, surface sterile in 10% sodium hypochlorite for 10 s, rinsed twice in sterile distilled water, and blotted with sterile filter paper. The tissue pieces were plated on half-strength potato dextrose agar (PDA) amended with 0.5 g/liter of streptomycin sulfate. The dishes were incubated at 23°C for 5 to 7 days. Cultures resembling Fusarium spp. were transferred onto water agar and hyphal tips from the margin of actively growing isolates were removed with a sterile probe and plated either on carnation leaf agar (CLA) or on half-strength PDA to generate pure cultures. Fusarium isolates were obtained and used for further studies. Among them, 54 were identified as Fusarium oxysporum and 23 as F. sambucinum. Identification was based on colony and conidial morphology on PDA and CLA, respectively. The identity was confirmed through DNA extraction followed by amplification and sequencing of the translation elongation factor (EF-1α) gene region. The Fusarium-ID v. (2) and the NCBI database were used to obtain the closest match to previously sequenced materials. Pathogenicity testing was done on disease-free potato tubers, cv. FL 1879. Tubers were surface sterilized for 10 min in 10% sodium hypochlorite and rinsed twice in distilled water. Three tubers per isolate were injected with 20 µl of a conidial suspension (106 conidia/ml) made from cultures grown on PDA for 7 days. Control tubers were injected with 20 µl of sterile distilled water. All tubers inoculated with F. sambucinum and F. oxysporum developed typical potato dry rot symptoms consisting of dry brown decay lesions. F. sambucinum and F. oxysporum were reisolated from all symptomatic tubers. An effective concentration for 50% reduction in growth (EC50) was determined for each F. sambucinum and F. oxysporum isolate for thiabendazole (TBZ), fludioxonil, and difenoconazole using the spiral gradient endpoint method (1). Sensitive and resistant F. sambucinum and F. oxysporum isolates were reported. Fifteen isolates of F. sambucinum and thirty-four of F. oxysporum were resistant to fludioxonil with EC50 greater than 130 mg/liter. The remainder was sensitive to fludioxonil with EC50 ranging from 0.8 to 4.9 mg/liter. To our knowledge, this is the first report of resistance to fludioxonil in isolates of F. sambucinum and F. oxysporum in Michigan. Fusarium insensitivity in laboratory studies may not translate directly to commercial production. This disparity may result from interactions not experienced in mixed populations or within a living host. There has been no compelling evidence to suggest that fludioxonil has failed to perform because of insensitivity to Fusarium. The occurrence of such isolated strains necessitates the development and registration of partner chemistries that can preempt any future concerns on lack of performance of products in use. References: (1) H. Förster et al. Phytopathology 94:163, 2004. (2) D. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (3) R. D. Peters et al. Plant Dis. 92:172, 2008.

3.
Plant Dis ; 92(7): 1091-1098, 2008 Jul.
Article in English | MEDLINE | ID: mdl-30769532

ABSTRACT

Azoxystrobin is applied early in the sugar beet growing season in north-central United States for control of Rhizoctonia damping-off and Rhizoctonia crown and root rot caused by Rhizoctonia solani anastomoses groups (AGs) 4 and 2-2, respectively. Fungicide application timings based on crop growth stage and soil temperature thresholds were evaluated in inoculated small-scale trials and in commercial fields with a history of Rhizoctonia crown and root rot. Soil temperature thresholds of 10, 15, and 20°C were selected for fungicide application timings and used to test whether soil temperature could be used to better time applications of azoxystrobin. In both small- and large-plot trials, timing applications after attainment of specific soil temperature thresholds did not improve efficacy of azoxystrobin in controlling damping-off or Rhizoctonia crown and root rot compared with application timings based on either planting date, seedling development, or leaf stage in a susceptible (E-17) and a resistant (RH-5) cultivar. Application rate and split application timings of azoxystrobin had no significant effect on severity of crown and root rot. Other environmental factors such as soil moisture may interact with soil temperature to influence disease development. Cv. RH-5 had higher sugar yield attributes than the susceptible cultivar (E-17) in seasons conducive and nonconducive to crown and root rot development. All isolates recovered from both small- and large-plot trials in all years were AG 2-2. R. solani AG 4 was not identified in any samples from any year.

4.
Plant Dis ; 90(11): 1460, 2006 Nov.
Article in English | MEDLINE | ID: mdl-30780924

ABSTRACT

Fusarium dry rot is one of the most important diseases of potato (Solanum tuberosum L.), affecting tubers in storage and whole seed or seed pieces after planting (2). Fusarium sambucinum Fuckel (teleomorph Giberella pulicaris) is the most common pathogen causing dry rot of stored tubers in North America. (4). Cut seed potato tubers of cvs. FL1879 and Pike with severe sprout rot were collected in Michigan during May 2006. As well as having rotted sprouts, all diseased tubers had dry rot. When diseased sprouts were cut in half, brown, necrotic lesions could be seen spreading down the center of the sprout in vascular tissue and at the base of the sprout in tuber tissue. Pathogen isolations were made from both infected tuber tissue and diseased sprouts on potato dextrose agar (PDA). In both cases, only F. sambucinum was isolated from diseased sprout and tuber tissue. Identification of the pathogen was based on colony and conidial morphology. This included white, fluffy mycelium on the surface and crimson coloration of the colonies viewed from the underside of PDA plates and large distinctive macroconidia (3). Identification was confirmed by comparison of ITS (internal transcribed spacer) sequence data with reference isolates. The ITS region of rDNA was amplified by polymerase chain reaction (PCR) with primers ITS1/ITS4 and sequenced. BLASTn analysis (1) of the sequence obtained showed a 100% homology with F. sambucinum Fuckel. For inoculum production, isolates were grown on PDA at 8°C for 14 days prior to inoculation. Pathogenicity was tested in potato tubers of cv. FL1879 with a single isolate collected from diseased sprouts. Whole seed tubers with 4 mm long sprouts were cut in half longitudinally with a sterile knife to ensure that seed pieces had viable sprouts. The cut surfaces of seed pieces were spray inoculated with 200 ml of conidial suspension (1 × 104 conidia ml-1) over the entire cut surface to give a final dosage of approximately 1 ml per seed piece. Care was taken to limit inoculum spray to the cut surface so that sprouts were not inoculated. Seed pieces (40 per replicate × 4 replicates) were then placed in plastic boxes (30 × 15 × 10 cm) and incubated in the dark at 18°C and 95% relative humidity for 30 days in a controlled environment chamber. As a control, cut seed pieces were spayed with sterile distilled water and incubated as above. All tubers inoculated with the pathogen developed typical Fusarium dry rot symptoms consisting of a brown, dry decay of tuber tissue with mycelial lined cavities. Sprouts on inoculated tubers developed symptoms that were observed in the initially collected seed pieces, and F. sambucinum was reisolated from all infected sprouts. The noninoculated control tubers did not develop any symptoms of dry rot. The results of the pathogenicity tests indicate that F. sambucinum caused sprout rot on potato seed pieces. Since only the cut surfaces of tubers were inoculated, it is assumed that infection of sprouts is systemic through the tuber. To our knowledge, this is the first report of F. sambucinum causing a sprout rot of developing sprouts on seed tubers in the United States. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) L. E. Hanson et al. Phytopathology 86:378, 1996. (3) P. E. Nelson et al. Pages 118-119 in: Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University, University Park and London, 1983. (4) G. A. Secor and B. Salas. Fusarium dry rot and Fusarium wilt. Pages 23-25 in: Compendium of Potato Diseases. 2nd ed. W. R. Stevenson et al., eds. The American Phytopathological Society, St. Paul, MN, 2001.

SELECTION OF CITATIONS
SEARCH DETAIL
...