Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 241: 123268, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35121537

ABSTRACT

European and national waste directives prioritize recycling of wastes, as well as material and energy recovery from wastes themselves. Bio-waste fraction can be converted into new resources whose quality is strictly dependent upon that of waste feedstock. Methods to evaluate the contamination from organic micropollutants in bio-waste are rarely investigated. The aim of this work was to develop an innovative analytical method for the extraction and quantification of 16 polycyclic aromatic hydrocarbons (PAHs) and 14 polychlorinated biphenyls (PCBs, including dioxin-like compounds) in bio-waste. Through a full-factorial experimental design, a microwave-assisted extraction technique was optimized to extract the thirty targeted micropollutants, studying the effect of cyclohexane and dichloromethane as extraction solvents with or without acetone, and of extraction temperature. Purification of the extract was obtained by a silica-based solid-phase extraction cartridge, followed by a sulfuric acid treatment. The analysis was carried out by gas chromatography coupled with mass spectrometry. The optimized method, validated directly in the bio-waste matrix fortified with isotopically marked surrogates, is characterized by good extraction recoveries, included within 47 and 106% (relative standard deviations <10%), by satisfactory intra-day (<1.1%) and inter-day (<9.3%) precision, and by low matrix effect (<17%), despite the complexity of the matrix. The optimized procedure, applied to the analysis of PAHs and PCBs in a bio-waste sample collected from a local anaerobic digestion and composting plant, showed a total PAHs content of 562 µg/kg. As regards PCBs, the dioxin-like congener PCB 118 was the only compound quantified (25 ± 6 µg kg-1).


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Gas Chromatography-Mass Spectrometry/methods , Microwaves , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Solid Phase Extraction , Solid Waste/analysis
2.
J Sep Sci ; 39(15): 2955-62, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27279638

ABSTRACT

Dielectric mineral oils are used to impregnate power transformers and large electrical apparatus, acting as both liquid insulation and heat dissipation media. Antioxidants and passivators are frequently added to mineral oils to enhance oxidation stability and reduce the electrostatic charging tendency, respectively. Since existing standard test methods only allow analysis of individual additives, new approaches are needed for the detection of mixtures. For the first time we investigate and discuss the performance of analytical methods, which require or do not require extraction as sample pretreatment, for the simultaneous reversed-phase high-performance liquid chromatography determination of passivators (benzotriazole, Irgamet(®) 39) and antioxidants (N-phenyl-1-naphtylamine, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol), chosen for their presence in marketed oils. Quick easy, cheap, effective, rugged and safe and solid phase extractions were evaluated as sample pretreatments. Direct sample-injection was also studied. Ultraviolet spectrophotometry and direct-current coulometry detection were explored. As less prone to additive concentrations variability, the direct-injection high-performance liquid chromatography with ultraviolet and coulometric detection method was validated through comparison with Standard Method IEC 60666 and through an ASTM interlaboratory proficiency test. Obtained detection limits are (mg kg(-1) ): benzotriazole (2.8), Irgamet(®) 39 (13.8), N-phenyl-1-naphtylamine (11.9), 2,6-di-tert-butylphenol (13.1), 2,6-di-tert-butyl-p-cresol (10.2). Simultaneous determination of selected additives was possible both in unused and used oils, with good precision and accuracy.

3.
Talanta ; 99: 703-11, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22967614

ABSTRACT

Copper is one of the main constituents of the components in power transformers and its presence both in liquid (mineral oil) and in solid (Kraft paper) insulators can lead to enhanced dielectric losses and to the subsequent deterioration of their insulating properties. Recently the latter have been correlated to plant failures which in turn may have severe impact on the environment. This paper describes the direct analysis of copper in insulating mineral oil by ICP-OES and how it was first optimized compared to the official American Society for Testing and Materials (ASTM) D7151 method. Detection and quantification limits of 8.8 µg kg(-1) and 29.3 µg kg(-1) were obtained. Secondly, copper determination was improved by coupling a microwave assisted dissolution procedure of the mineral oil which avoided the problems, in the real samples, due to the presence of solid species of copper which cannot be nebulized following traditional methods described in literature. Sixteen mineral insulating oils sampled from transformers in service were analyzed before and after dissolution. In order to evaluate copper speciation, size fractionation was performed by filtration on PTFE filters (0.45, 1 and 5 µm). This test was performed on all the oil samples. Finally, because of the key role of the solid insulator in failed transformers, the Authors applied the developed method to study the copper deposition tendency onto the insulating Kraft paper tapes exerted by two unused oils (a corrosive and a non-corrosive one) under defined ageing conditions.

4.
Chemosphere ; 69(8): 1326-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17619050

ABSTRACT

The effect on halogenated aromatics of solid, non-toxic oxidants such as sodium percarbonate and the urea/hydrogen peroxide complex (Fenton-like reagents) was investigated. A microwaves-assisted, solvent-free method for soil decontamination is presented. It marks a considerable advance in the search of more efficient, environment-friendly procedures for the degradative oxidation of persistent organic pollutants. Residual pollutants in treated soil samples were determined by GC/MS analysis after solvent extraction or direct thermal desorption. Results showed that 4-chloronaphthol, 2,4-dichlorophenoxyacetic acid and p-nonylphenol had been degraded completely, 2,4-dibromophenol to a large extent.


Subject(s)
Decontamination/methods , Hydrogen Peroxide/chemistry , Iron/chemistry , Microwaves , Soil Pollutants/chemistry , Gas Chromatography-Mass Spectrometry
5.
Environ Sci Technol ; 39(14): 5469-74, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16082982

ABSTRACT

Halogen-containing aromatics, mainly bromine-containing phenols, are harmful compounds contaminating pyrolysis oil from electronic boards containing halogenated flame retardants. In addition,theirformation increases the potential for evolution of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs) at relatively low temperature (up to 500 degrees C). As a model compound, 2,4-dibromophenol (DBP) was pyrolyzed at 290-450 degrees C. While its pyrolysis in a nitrogen flow reactor or in encapsulated ampules yields bromine-containing phenols, phenoxyphenols, PBDDs, and PBDFs, pyrolysis of DBP in a hydrogen-donating medium of polypropylene (PP) at 290-350 degrees C mainly results in the formation of phenol and HBr, indicating the occurrence of a facile hydrodebromination of DBP. The hydrodebromination efficiency depends on temperature, pressure, and the ratio of the initial components. This thermal behavior of DBP is compared to that of 2,4-dichlorophenol and decabromodiphenyl ether. A treatment of halogen-containing aromatics with PP offers a new perspective on the development of low-environmental-impact disposal processes for electronic scrap.


Subject(s)
Electronics , Hydrocarbons, Aromatic/chemistry , Incineration , Phenols/chemistry , Halogens , Polypropylenes/chemistry , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...