Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Orthop Trauma Surg ; 136(11): 1595-1600, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27498103

ABSTRACT

PURPOSE: The purpose of this study was to characterize the biomechanical effect of two grasping suture techniques used during ligament reconstruction: the modified rolling-hitch (MRH) and the modified finger-trap (MFT). METHODS: Flexor profundus tendons were harvested from fresh pig hind-leg trotters. Each specimen was mounted on an electro-mechanic universal testing machine (Instron 3367). In half of all tendons (15 specimens), the suture was passed around the tendon following the MRH knot (Group 1). In the remaining half of all tendons (15 specimens), the suture was passed over a distance of 30 mm according to the MFT suture technique (Group 2). As per standard intra-operative technique, a 1 cm residual tendon stub was left free from suture in all samples. All specimens were preconditioned to a load of 50 N for 10 min, followed by three cycles loading between 50 and 120 N. At this point, each sample was cyclically tensioned between 35 and 240 N, at 1 Hz for 200 cycles. Load-to-failure test was then carried out at a rate of 200 mm/min. RESULTS: Rupture of the suture material at the knot was the mode of failure in all specimens during the loaded to failure test. Significant difference was found between Group 1 vs Group 2 for the elongation between the 0th cycle and 10th cycle, the elongation between the 10th cycle and 200th cycle, the mean stiffness at the 10th cycle, and the mean stiffness at the 190th cycle. No significant differences were noted between Group 1 and Group 2 concerning the ultimate load-to-failure. CONCLUSION: This study showed that both suture methods appear to be biomechanically effective in a porcine tendon model. However, the single-knot grasping technique (MRH) provided superior biomechanical properties compared with the MFT technique.


Subject(s)
Finger Injuries/surgery , Plastic Surgery Procedures/methods , Suture Techniques/instrumentation , Sutures , Tendons/surgery , Animals , Swine
2.
Materials (Basel) ; 8(11): 7371-7388, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-28793643

ABSTRACT

The present work describes the experimental mechanical characterisation of a natural flax fibre reinforced epoxy polymer composite. A commercial plain woven quasi-unidirectional flax fabric with spun-twisted yarns is employed in particular, as well as unidirectional composite panels manufactured with three techniques: hand-lay-up, vacuum bagging and resin infusion. The stiffness and strength behaviours are investigated under both monotonic and low-cycle fatigue loadings. The analysed material has, in particular, shown a typical bilinear behaviour under pure traction, with a knee yield point occurring at a rather low stress value, after which the material tensile stiffness is significantly reduced. In the present work, such a mechanism is investigated by a phenomenological approach, performing periodical loading/unloading cycles, and repeating tensile tests on previously "yielded" samples to assess the evolution of stiffness behaviour. Infrared thermography is also employed to measure the temperature of specimens during monotonic and cyclic loading. In the first case, the thermal signal is monitored to correlate departures from the thermoelastic behaviour with the onset of energy loss mechanisms. In the case of cyclic loading, the thermoelastic signal and the second harmonic component are both determined in order to investigate the extent of elastic behaviour of the material.

SELECTION OF CITATIONS
SEARCH DETAIL
...