Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36080009

ABSTRACT

Two series of ß-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.

2.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144501

ABSTRACT

A new series of luminescent heterometallic europium(III)-lutetium(III) terephthalate metal-organic frameworks, namely (EuxLu1-x)2bdc3·nH2O, was synthesized using a direct reaction in a water solution. At the Eu3+ concentration of 1-40 at %, the MOFs were formed as a binary mixture of the (EuxLu1-x)2bdc3 and (EuxLu1-x)2bdc3·4H2O crystalline phases, where the Ln2bdc3·4H2O crystalline phase was enriched by europium(III) ions. At an Eu3+ concentration of more than 40 at %, only one crystalline phase was formed: (EuxLu1-x)2bdc3·4H2O. All MOFs containing Eu3+ exhibited sensitization of bright Eu3+-centered luminescence upon the 280 nm excitation into a 1ππ* excited state of the terephthalate ion. The fine structure of the emission spectra of Eu3+ 5D0-7FJ (J = 0-4) significantly depended on the Eu3+ concentration. The luminescence quantum yield of Eu3+ was significantly larger for Eu-Lu terephthalates containing a low concentration of Eu3+ due to the absence of Eu-Eu energy migration and the presence of the Ln2bdc3 crystalline phase with a significantly smaller nonradiative decay rate compared to the Ln2bdc3·4H2O.

3.
Analyst ; 147(13): 3055-3064, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35661169

ABSTRACT

Here, we propose a novel approach to the classification of blue ballpoint pen inks based on a combination of selective extraction of coloring components from a paper carrier, digital color analysis (DCA) of the remaining traces, and hierarchical cluster analysis of DCA results. Since most documents of high importance are still produced in hard copies, the proposed method, being highly time- and cost-efficient, could be a significant contribution to forensic science in the field of authenticating handwritten documents. Several commonly used solvents were applied in parallel as extractants to the replicate strokes produced by each pen. It turned out to be possible to limit the number of extractants required for an unambiguous classification to three. We have shown that the optimal descriptor for agglomerative clustering is the colorimetric distance between the original and extracted ink traces in the RGB color space. Five separate clusters of inks that are independent of sample storage temperature were obtained from a set of 16 different pens. This conclusion was further confirmed by the analysis of principal components. The developed DCA-based data processing pipeline outperformed the clustering based on the data of high-performance liquid chromatography in terms of versatility providing a more informative analysis with respect to the inks based on the phthalocyanine dyes.

4.
Mikrochim Acta ; 189(7): 259, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35704127

ABSTRACT

A rapid and effective technique has been develped for the fabrication of sensor-active copper-based materials on the surface of such flexible polymers as terephthalate, polyethylene naphthalate, and polyimide using the method of laser surface modification. For this purpose, we optimized the polymer surface activation parameters using laser sources with a picosecond pulse duration for subsequent selective metallization within the activated region. Furthermore, the fabricated copper structures were modified with gold nanostructures and by electrochemical passivation to produce copper-gold and oxide-containing copper species, respectively. As a result, in comparison with pure copper electrodes, these composite materials exhibit much better electrocatalytic performance concerning the non-enzymatic identification of biologically important disease markers such as glucose, hydrogen peroxide, and dopamine.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Copper/chemistry , Electrochemical Techniques/methods , Gold/chemistry , Lasers
5.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407245

ABSTRACT

In this study, we developed a method for the fabrication of electrically conductive copper patterns of arbitrary topology and films on dielectric substrates, by improved laser-induced synthesis from deep eutectic solvents. A significant increase in the processing efficiency was achieved by acceptor substrate pretreatment, with the laser-induced microplasma technique, using auxiliary glass substrates and optional laser post-processing of the recorded structures; thus, the proposed approach offers a complete manufacturing cycle, utilizing a single, commercially available, pulsed Yb fiber laser system. The potential implications of the presented research are amplified by the observation of laser-induced periodic surface structures (LIPSSs) that may be useful for the further tuning of tracks' functional properties.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34947705

ABSTRACT

Direct writing of cobalt/cobalt oxide composites has attracted attention for its potential use in catalysts and detectors in microsensors. In this study, cobalt-based composite patterns were selectively formed on glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET) substrates via the femtosecond laser reductive sintering of Co3O4 nanoparticles in an ambient atmosphere. A Co3O4 nanoparticle ink, including the nanoparticles, ethylene glycol as a reductant, and polyvinylpyrrolidone as a dispersant, was spin-coated onto the substrates. Near-infrared femtosecond laser pulses were then focused and scanned across the ink films to form the patterns. The non-sintered nanoparticles were subsequently removed from the substrate. The resulting sintered patterns were found to be made up of Co/CoO composites on the glass substrates, utilizing various pulse energies and scanning speeds, and the Co/CoO/Co3O4 composites were fabricated on both the PEN and PET substrates. These results suggest that the polymer substrates with low thermal resistance react with the ink during the reductive sintering process and oxidize the patterns more easily compared with the patterns on the glass substrates. Such a direct writing technique of cobalt/cobalt oxide composites is useful for the spatially selective printing of catalysts and detectors in functional microsensors.

7.
Materials (Basel) ; 14(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34639944

ABSTRACT

Comprehensive study of the structure and bonding of disodium, dipotassium and diammonium di-o-phthalatocuprates(II) dihydrates has been undertaken. The crystal structure of ammonium o-phthalatocuprate has been determined. The identity of structures of phthalatocuprate chains in potassium and ammonium salts has been revealed. Vibrational spectra of all three compounds have been recorded, and the assignment of vibrational bands has been made. Force field calculations have shown a minor effect of outer-sphere cations (Na+, K+, NH4+) on both intraligand (C-O) and metal-ligand bond strengths. Synthesized compounds have been tested as electrochemical sensors on D-glucose, dopamine and paracetamol. Their sensitivity to analytes varied in the order of Na+ > K+ > NH4+. This effect has been explained by the more pronounced steric hindrance of copper ions in potassium and ammonium salts.

8.
Nanomaterials (Basel) ; 11(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34578764

ABSTRACT

The luminescent coarse-, micro- and nanocrystalline europium(III) terephthalate tetrahydrate (Eu2bdc3·4H2O) metal-organic frameworks were synthesized by the ultrasound-assisted wet-chemical method. Electron micrographs show that the europium(III) terephthalate microparticles are 7 µm long leaf-like plates. According to the dynamic light scattering technique, the average size of the Eu2bdc3·4H2O nanoparticles is equal to about 8 ± 2 nm. Thereby, the reported Eu2bdc3·4H2O nanoparticles are the smallest nanosized rare-earth-based MOF crystals, to the best of our knowledge. The synthesized materials demonstrate red emission due to the 5D0-7FJ transitions of Eu3+ upon 250 nm excitation into 1ππ* state of the terephthalate ion. Size reduction results in broadened emission bands, an increase in the non-radiative rate constants and a decrease in both the quantum efficiency of the 5D0 level and Eu3+ and the luminescence quantum yields. Cu2+, Cr3+, and Fe3+ ions efficiently and selectively quench the luminescence of nanocrystalline europium(III) terephthalate, which makes it a prospective material for luminescent probes to monitor these ions in waste and drinking water.

9.
ACS Omega ; 6(28): 18099-18109, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308043

ABSTRACT

We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 µm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 µm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 µA) and linear ranges (10-300 and 300-1500 µA) as well as the highest sensitivities of 18,570 and 2929 µA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.

10.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065930

ABSTRACT

In this work, the method of selective laser reductive sintering was used to fabricate the sensor-active copper and nickel microstructures on the surface of glass-ceramics suitable for non-enzymatic detection of glucose. The calculated sensitivities for these microsensors are 1110 and 2080 µA mM-1·cm-2 for copper and nickel, respectively. Linear regime of enzymeless glucose sensing is provided between 0.003 and 3 mM for copper and between 0.01 and 3 mM for nickel. Limits of glucose detection for these manufactured micropatterns are equal to 0.91 and 2.1 µM for copper and nickel, respectively. In addition, the fabricated materials demonstrate rather good selectivity, long-term stability and reproducibility.

11.
Anal Chem ; 93(12): 5015-5019, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33719409

ABSTRACT

We report here a simple and cost-effective technique for classification of the samples of writing inks based on their digital color analysis (DCA). The dynamics of artificial aging of writing inks under UV irradiation was studied by means of DCA for the first time. The color of ballpoint pen marks was recorded over time using an ordinary consumer DSLR camera. The inks were classified according to the parameters of their color degradation curves with precision superior to conventional Raman scattering method, which serves as a proof-of-concept of the proposed approach. The reported approach has broad prospects for implementation by criminalists for document investigation when document forgery is suspected. The proposed technique can be of interest not only in the field of forensic science but also for those who deal with dyes and dye-containing materials and their degradation over time as well as for the study of any processes, the evolution of which is reflected in a color change.

12.
RSC Adv ; 11(32): 19521-19530, 2021 May 27.
Article in English | MEDLINE | ID: mdl-35479213

ABSTRACT

In the current study, the method of Selective Surface Activation Induced by Laser (SSAIL) was used for the fabrication of metallic and bimetallic structures based on copper and gold on the surface of glass and glass-ceramics. It was shown that the fabricated electrodes are suitable for non-enzymatic detection of biologically essential analytes such as glucose. The implemented approach allows performing high-rate metallization of various dielectrics. Voltammetric methods were applied to evaluate the electrocatalytic activity of the obtained structures, which were used as working electrodes. The most promising results were revealed by copper-gold electrode structures manufactured on glass-ceramics. For these structures, sensitivity towards glucose sensing was 3060 µA mM-1 cm-2. The linear range of glucose detection varied between 0.3 and 1000 µM. Besides, the manufactured electrodes exhibited high selectivity and long-term stability.

13.
Materials (Basel) ; 13(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260836

ABSTRACT

In this paper, we propose a fast and simple approach for the fabrication of the electrocatalytically active ruthenium-containing microstructures using a laser-induced metal deposition technique. The results of scanning electron microscopy and electrical impedance spectroscopy (EIS) demonstrate that the fabricated ruthenium-based microelectrode had a highly developed surface composed of 10 µm pores and 10 nm zigzag cracks. The fabricated material exhibited excellent electrochemical properties toward non-enzymatic dopamine sensing, including high sensitivity (858.5 and 509.1 µA mM-1 cm-2), a low detection limit (0.13 and 0.15 µM), as well as good selectivity and stability.

14.
Materials (Basel) ; 13(15)2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32751966

ABSTRACT

ß-NaYF4 microcrystals co-doped with Yb3+, Er3+/Tm3+, and Gd3+ ions were synthesized via a hydrothermal method using rare-earth chlorides as the precursors. The SEM and XRD data show that the doped ß-NaYF4 form uniform hexagonal prisms with an approximate size of 600-800 nm. The partial substitution of Y by Gd results in size reduction of microcrystals. Upconversion luminescence spectra of microcrystals upon 980 nm excitation contain characteristic intra-configurational ff bands of Er3+/Tm3+ ions. An addition of Gd3+ ions leads to a significant enhancement of upconversion luminescence intensity with maxima at 5 mol % of dopant.

15.
Anal Chim Acta ; 1044: 138-146, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30442395

ABSTRACT

We report one-step in situ laser-induced synthesis of the conductive copper microstructures doped with iron, zinc, nickel, and cobalt with highly developed surface area. It was observed that the presence of chlorides of the aforementioned metals in the solutions used in our experiments increases the deposition rate and the amount of copper in the resulting deposits; it also leads to the deposit miniaturization. The laser deposition from solutions containing cobalt (II) chloride of concentration more than 0.003 M results in fabrication of copper microelectrode with better electrochemical properties than those deposited from solutions containing chlorides of other metals of the same concentration. Moreover, copper microelectrode doped with cobalt has demonstrated good reproducibility and long-run stability as well as sensitivity and selectivity towards determination of hydrogen peroxide (limit of detection-0.2 µM) and d-glucose (limit of detection-2.2 µM). Thus, in this article we have shown the opportunity to manufacture two-phase microcomposite materials with good electrical conductivity and electrochemical characteristics using in situ laser-induced metal deposition technique. These materials might be quite useful in development of new perspective sensors for non-enzymatic detection of such important analytes as hydrogen peroxide and glucose.

16.
Talanta ; 167: 201-207, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340711

ABSTRACT

The synthesis of conductive gold and copper-gold microstructures with high developed surface based on the method of laser-induced metal deposition from solution was developed. The topology and crystallization phase of these structures were observed by means of scanning electron microscopy and X-ray diffraction, respectively. The electrochemical properties of the synthesized materials were investigated using cyclic voltamperometry and amperometry. According to the obtained results, it was found out that copper-gold microstructures demonstrate a linear dependence of Faraday current vs. concentration from 0.025 to 5µM for D-glucose and from 0.025 to 10µM for hydrogen peroxide. In turn, gold deposit exhibits a linear dependence of Faraday current vs. concentration from 0.025 to 50µM for D-glucose and from 0.025 to 1µM for hydrogen peroxide. Moreover, the synthesized materials reveal low detection limits (0.025µM) with respect to the aforementioned analytes, which is quite promising for their potential application in design and fabrication of new non-enzymatic biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...