Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 19611, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608172

ABSTRACT

Mobile, apex predators are commonly assumed to stabilize food webs through trophic coupling across spatially distinct habitats. The assumption that trophic coupling is common remains largely untested, despite evidence that individual behaviors might limit trophic coupling. We used stable isotope data from common bottlenose dolphins across the Gulf of Mexico to determine if these apex predators coupled estuarine and adjacent, nearshore marine habitats. δ13C values differed among the sites, likely driven by environmental factors that varied at each site, such as freshwater input and seagrass cover. Within most sites, δ13C values differed such that dolphins sampled in the upper reaches of embayments had values indicative of estuarine habitats while those sampled outside or in lower reaches of embayments had values indicative of marine habitats. δ15N values were more similar among and within sites than δ13C values. Data from multiple tissues within individuals corroborated that most dolphins consistently used a narrow range of habitats but fed at similar trophic levels in estuarine and marine habitats. Because these dolphins exhibited individual habitat specialization, they likely do not contribute to trophic coupling between estuarine and adjacent marine habitats at a regional scale, suggesting that not all mobile, apex predators trophically couple adjacent habitats.

2.
J Anim Ecol ; 90(5): 1191-1204, 2021 05.
Article in English | MEDLINE | ID: mdl-33608907

ABSTRACT

Dolphin morbillivirus (DMV) is a virulent pathogen that causes high mortality outbreaks in delphinids globally and is spread via contact among individuals. Broadly ranging nearshore and open-ocean delphinids are likely reservoir populations that transmit DMV to estuarine populations. We assessed the seroprevalence of DMV antibodies and determined the habitat use of common bottlenose dolphins, Tursiops truncatus truncatus, from two estuarine sites, Barataria Bay and Mississippi Sound, in the northern Gulf of Mexico. We predicted that risk to DMV exposure in estuarine dolphins is driven by spatial overlap in habitat use with reservoir populations. Serum was collected from live-captured dolphins and tested for DMV antibodies. Habitat use of sampled individuals was determined by analysing satellite-tracked movements and stable isotope values. DMV seroprevalences were high among dolphins at Barataria Bay (37%) and Mississippi Sound (44%), but varied differently within sites. Ranging patterns of Barataria Bay dolphins were categorized into two groups: Interior and Island-associated. DMV seroprevalences were absent in Interior dolphins (0%) but high in Island-associated dolphins (45%). Ranging patterns of Mississippi Sound dolphins were categorized into three groups: Interior, Island-east and Island-west. DMV seroprevalences were detected across Mississippi Sound (Interior: 60%; Island-east: 20%; and Island-west: 43%). At both sites, dolphins in habitats with greater marine influence had enriched δ13 C values, and Barataria Bay dolphins with positive DMV titres had carbon isotope values indicative of marine habitats. Positive titres for DMV antibodies were more common in the lower versus upper parts of Barataria Bay but evenly distributed across Mississippi Sound. A dolphin's risk of exposure to DMV is influenced by how individual ranging patterns interact with environmental geography. Barataria Bay's partially enclosed geography likely limits the nearshore or open-ocean delphinids that carry DMV from interacting with dolphins that use interior, estuarine habitats, decreasing their exposure to DMV. Mississippi Sound's relatively open geography allows for greater spatial overlap and mixing among estuarine, nearshore and/or open-ocean cetaceans. The spread of DMV, and likely other diseases, is affected by the combination of individual movements, habitat use and the environment.


Subject(s)
Bottle-Nosed Dolphin , Common Dolphins , Morbillivirus , Animals , Ecosystem , Gulf of Mexico , Seroepidemiologic Studies
3.
Proc Biol Sci ; 282(1818): 20151944, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26538595

ABSTRACT

Common bottlenose dolphins (Tursiops truncatus) inhabit bays, sounds and estuaries across the Gulf of Mexico. Following the Deepwater Horizon oil spill, studies were initiated to assess potential effects on these ecologically important apex predators. A previous study reported disease conditions, including lung disease and impaired stress response, for 32 dolphins that were temporarily captured and given health assessments in Barataria Bay, Louisiana, USA. Ten of the sampled dolphins were determined to be pregnant, with expected due dates the following spring or summer. Here, we report findings after 47 months of follow-up monitoring of those sampled dolphins. Only 20% (95% CI: 2.50-55.6%) of the pregnant dolphins produced viable calves, as compared with a previously reported pregnancy success rate of 83% in a reference population. Fifty-seven per cent of pregnant females that did not successfully produce a calf had been previously diagnosed with moderate-severe lung disease. In addition, the estimated annual survival rate of the sampled cohort was low (86.8%, 95% CI: 80.0-92.7%) as compared with survival rates of 95.1% and 96.2% from two other previously studied bottlenose dolphin populations. Our findings confirm low reproductive success and high mortality in dolphins from a heavily oiled estuary when compared with other populations. Follow-up studies are needed to better understand the potential recovery of dolphins in Barataria Bay and, by extension, other Gulf coastal regions impacted by the spill.


Subject(s)
Bottle-Nosed Dolphin , Mortality , Petroleum Pollution/adverse effects , Pregnancy Outcome/veterinary , Reproduction/drug effects , Animals , Bays , Female , Gulf of Mexico , Louisiana/epidemiology , Male , Pregnancy
4.
Dis Aquat Organ ; 112(2): 161-75, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25449327

ABSTRACT

An unusual mortality event (UME) was declared for cetaceans in the northern Gulf of Mexico (GoM) for Franklin County, Florida, west through Louisiana, USA, beginning in February 2010 and was ongoing as of September 2014. The 'Deepwater Horizon' (DWH) oil spill began on 20 April 2010 in the GoM, raising questions regarding the potential role of the oil spill in the UME. The present study reviews cetacean mortality events that occurred in the GoM prior to 2010 (n = 11), including causes, durations, and some specific test results, to provide a historical context for the current event. The average duration of GoM cetacean UMEs prior to 2010 was 6 mo, and the longest was 17 mo (2005-2006). The highest number of cetacean mortalities recorded during a previous GoM event was 344 (in 1990). In most previous events, dolphin morbillivirus or brevetoxicosis was confirmed or suspected as a causal factor. In contrast, the current northern GoM UME has lasted more than 48 mo and has had more than 1000 reported mortalities within the currently defined spatial and temporal boundaries of the event. Initial results from the current UME do not support either morbillivirus or brevetoxin as primary causes of this event. This review is the first summary of cetacean UMEs in the GoM and provides evidence that the most common causes of previous UMEs are unlikely to be associated with the current UME.


Subject(s)
Cetacea , Environmental Monitoring/methods , Animals , Ecosystem , Gulf of Mexico
6.
Environ Sci Technol ; 48(1): 93-103, 2014.
Article in English | MEDLINE | ID: mdl-24350796

ABSTRACT

The oil spill resulting from the explosion of the Deepwater Horizon drilling platform initiated immediate concern for marine wildlife, including common bottlenose dolphins in sensitive coastal habitats. To evaluate potential sublethal effects on dolphins, health assessments were conducted in Barataria Bay, Louisiana, an area that received heavy and prolonged oiling, and in a reference site, Sarasota Bay, Florida, where oil was not observed. Dolphins were temporarily captured, received a veterinary examination, and were then released. Dolphins sampled in Barataria Bay showed evidence of hypoadrenocorticism, consistent with adrenal toxicity as previously reported for laboratory mammals exposed to oil. Barataria Bay dolphins were 5 times more likely to have moderate-severe lung disease, generally characterized by significant alveolar interstitial syndrome, lung masses, and pulmonary consolidation. Of 29 dolphins evaluated from Barataria Bay, 48% were given a guarded or worse prognosis, and 17% were considered poor or grave, indicating that they were not expected to survive. Disease conditions in Barataria Bay dolphins were significantly greater in prevalence and severity than those in Sarasota Bay dolphins, as well as those previously reported in other wild dolphin populations. Many disease conditions observed in Barataria Bay dolphins are uncommon but consistent with petroleum hydrocarbon exposure and toxicity.


Subject(s)
Adrenal Insufficiency/veterinary , Bottle-Nosed Dolphin , Lung Diseases/veterinary , Petroleum Pollution , Adrenal Insufficiency/epidemiology , Animals , Bays , Florida/epidemiology , Louisiana/epidemiology , Lung Diseases/epidemiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...