Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 12(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35405857

ABSTRACT

The long-term storage of boar sperm presents an ongoing challenge, and the modification of the cryoprotective compounds in semen extenders is crucial for improving cryopreservation's success rate. The aim of our study was to reduce the percentage of glycerol in the extender by elimination or substitution with biocompatible, non-toxic polysaccharides. For boar semen extender improvement, we tested a novel modification with the polysaccharides dextran and pentaisomaltose in combination with unique in silico predictive modeling. We targeted the analysis of in vitro qualitative sperm parameters such as motility, viability, mitochondrial activity, acrosome integrity, and DNA integrity. Non-penetrating polysaccharide-based cryoprotective agents interact with sperm surface proteins such as spermadhesins, which are recognized as fertility markers of boar sperm quality. The in silico docking study showed a moderate binding affinity of dextran and pentaisomaltose toward one specific spermadhesin known as AWN, which is located in the sperm plasma membrane. Pentaisomaltose formed a hydrophobic pocket for the AWN protein, and the higher energy of this protein-ligand complex compared with dextran was calculated. In addition, the root mean square deviation (RMSD) analysis for the molecular dynamics (MD) of both polysaccharides and AWN simulation suggests their interaction was highly stable. The in silico results were supported by in vitro experiments. In the experimental groups where glycerol was partially or entirely substituted, the use of pentaisomaltose resulted in improved sperm mitochondrial activity and DNA integrity after thawing when compared with dextran. In this paper, we demonstrate that pentaisomaltose, previously used for cryopreservation in hematopoietic stem cells, represents a promising compound for the elimination or reduction of glycerol in extenders for boar semen cryopreservation. This novel approach, using in silico computer prediction and in vitro testing, represents a promising technique to help identify new cryoprotectants for use in animal breeding or genetic resource programs.

2.
Cells ; 10(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445482

ABSTRACT

Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.


Subject(s)
Cell Communication , Mammals/metabolism , Receptors, Cell Surface/metabolism , Spermatozoa/metabolism , Zona Pellucida/metabolism , Animals , Humans , Ligands , Male , Membrane Glycoproteins/metabolism , Spermatozoa/cytology
3.
Int J Mol Sci ; 21(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532042

ABSTRACT

Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine ß-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.


Subject(s)
Prostatic Secretory Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Sperm Capacitation/physiology , Ubiquitin/metabolism , Animals , Male , Spermatozoa/metabolism , Spermatozoa/physiology , Swine , Ubiquitination
4.
Cell Tissue Res ; 380(2): 237-262, 2020 May.
Article in English | MEDLINE | ID: mdl-32140927

ABSTRACT

Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.


Subject(s)
Fertility/physiology , Fertilization/physiology , Sperm Capacitation/physiology , Animals , Disease Models, Animal , Humans , Male , Swine
5.
Cells ; 9(1)2020 01 10.
Article in English | MEDLINE | ID: mdl-31936899

ABSTRACT

Estrogens are steroid hormones that affect a wide range of physiological functions. The effect of estrogens on male reproductive tissues and sperm cells through specific receptors is essential for sperm development, maturation, and function. Although estrogen receptors (ERs) have been studied in several mammalian species, including humans, they have not yet been described in bull spermatozoa and reproductive tissues. In this study, we analyzed the presence of all types of ERs (ESR1, ESR2, and GPER1) in bull testicular and epididymal tissues and epididymal and ejaculated spermatozoa, and we characterize them here for the first time. We observed different localizations of each type of ER in the sperm head by immunofluorescent microscopy. Additionally, using a selected polyclonal antibody, we found that each type of ER in bull sperm extracts had two isoforms with different molecular masses. The detailed detection of ERs is a prerequisite not only for understanding the effect of estrogen on all reproductive events but also for further studying the negative effect of environmental estrogens (endocrine disruptors) on processes that lead to fertilization.


Subject(s)
Cattle/metabolism , Receptors, Estrogen/metabolism , Reproduction , Spermatozoa/metabolism , Animals , Epididymis/metabolism , Male , Receptors, G-Protein-Coupled/metabolism , Testis/metabolism
6.
Mol Cancer Ther ; 13(4): 812-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24552772

ABSTRACT

The Wnt signaling pathway is required during embryonic development and for the maintenance of homeostasis in adult tissues. However, aberrant activation of the pathway is implicated in a number of human disorders, including cancer of the gastrointestinal tract, breast, liver, melanoma, and hematologic malignancies. In this study, we identified monensin, a polyether ionophore antibiotic, as a potent inhibitor of Wnt signaling. The inhibitory effect of monensin on the Wnt/ß-catenin signaling cascade was observed in mammalian cells stimulated with Wnt ligands, glycogen synthase kinase-3 inhibitors, and in cells transfected with ß-catenin expression constructs. Furthermore, monensin suppressed the Wnt-dependent tail fin regeneration in zebrafish and Wnt- or ß-catenin-induced formation of secondary body axis in Xenopus embryos. In Wnt3a-activated HEK293 cells, monensin blocked the phoshorylation of Wnt coreceptor low-density lipoprotein receptor related protein 6 and promoted its degradation. In human colorectal carcinoma cells displaying deregulated Wnt signaling, monensin reduced the intracellular levels of ß-catenin. The reduction attenuated the expression of Wnt signaling target genes such as cyclin D1 and SP5 and decreased the cell proliferation rate. In multiple intestinal neoplasia (Min) mice, daily administration of monensin suppressed progression of the intestinal tumors without any sign of toxicity on normal mucosa. Our data suggest monensin as a prospective anticancer drug for therapy of neoplasia with deregulated Wnt signaling.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Colorectal Neoplasms/drug therapy , Monensin/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mice , Monensin/therapeutic use , Neoplasms, Experimental , Xenograft Model Antitumor Assays , Xenopus , Zebrafish , beta Catenin/metabolism
7.
Gastroenterology ; 144(2): 381-391, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23142137

ABSTRACT

BACKGROUND & AIMS: The Wnt signaling pathway is required for maintenance of the intestinal epithelia; blocking this pathway reduces the proliferative capacity of the intestinal stem cells. However, aberrant Wnt signaling leads to intestinal cancer. We investigated the roles of the Wnt pathway in homeostasis of the intestinal epithelium and during malignant transformation in human cells and mice. METHODS: We performed chromatin immunoprecipitation (ChIP) with DNA microarray analysis (ChIP-on-chip) to identify genes regulated by Wnt signaling in human colorectal cancer cells Colo320, DLD1, LS174T, and SW480. Formation of intestinal tumor was induced in C57BL/6J mice using azoxymethane and dextran sulfate. Intestinal tissues from these mice, as well as Apc(+/Min) and Apc(CKO/CKO)/Lgr5-EGFP-IRES-CreERT2 mice, were analyzed by immunohistochemistry and in situ hybridization. RESULTS: We identified promoter regions of 960 genes that interacted with the Wnt pathway nuclear effector T-cell factor 4 in 4 different human colorectal cancer-derived cell lines; 18 of these promoters were present in all chromatin precipitates. Wnt signaling up-regulated a member of the tumor necrosis factor receptor superfamily called TROY. Levels of TROY messenger RNA were increased in human cells with deficiencies in the adenomatous polyposis coli (APC) gene and in cells stimulated with the Wnt3a ligand. Expression of Troy was significantly up-regulated in neoplastic tissues from mice during intestinal tumorigenesis. Lineage tracing experiments revealed that Troy is produced specifically by fast-cycling intestinal stem cells. TROY associated with a unique marker of these cells, leucine-rich repeat-containing G-protein coupled receptor (LGR) 5. In organoids established from the intestinal crypts, Troy suppressed signaling mediated by R-spondin, a Wnt agonist. CONCLUSIONS: TROY is up-regulated in human colorectal cancer cell lines and in intestinal tumors in mice. It functions as a negative modulator of the Wnt pathway in LGR5-positive stem cells.


Subject(s)
Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Intestinal Mucosa/metabolism , Neoplastic Stem Cells/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Tumor Necrosis Factor/physiology , Wnt Signaling Pathway/physiology , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Immunohistochemistry , In Situ Hybridization , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , RNA, Neoplasm/genetics , Reverse Transcriptase Polymerase Chain Reaction
8.
Protein Expr Purif ; 86(2): 142-50, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23059620

ABSTRACT

Using a codon-optimized gene fragment, we report remarkable yields for extracellular domain of human NK cell receptor (NKp30ex) when produced on M9 minimal medium, even with low (2g/L) glucose concentration. The yields were identical using media containing (15)NH(4)Cl or (15)NH(4)Cl in combination with all-(13)C-d-glucose allowing to produce homogenous soluble monomeric NKp30 in several formats needed for advanced NMR studies. Our optimized protocol now allows to produce routinely 10mg batches of these NKp30ex proteins per 1L of M9 production medium in four working days. The purity and identity of the produced proteins were checked by SDS-PAGE, MALDI MS peptide mapping, and high resolution ion cyclotron resonance MS. Analytical ultracentrifugation confirmed the monomeric status of the produced proteins. Long-term stability of the produced protein proved to be very good allowing its use for NMR studies using elevated temperatures. These studies should reveal further details of the interaction of NKp30 with several of its ligands including target cell surface proteins and heparin-derived oligosaccharides.


Subject(s)
Natural Cytotoxicity Triggering Receptor 3/biosynthesis , Natural Cytotoxicity Triggering Receptor 3/chemistry , Amino Acid Sequence , Ammonium Chloride/chemistry , Base Sequence , Bioreactors , Codon , Electrophoresis, Polyacrylamide Gel , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Molecular Sequence Data , Natural Cytotoxicity Triggering Receptor 3/genetics , Natural Cytotoxicity Triggering Receptor 3/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility , Ultracentrifugation
9.
Cancer Res ; 72(11): 2822-32, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22440753

ABSTRACT

Increased nuclear accumulation of ß-catenin, a mediator of canonical Wnt signaling, is found in numerous tumors and is frequently associated with tumor progression and metastasis. Inhibition of Wnt/ß-catenin signaling therefore is an attractive strategy for anticancer drugs. In this study, we have identified a novel small molecule inhibitor of the ß-catenin signaling pathway, JW55, that functions via inhibition of the PARP domain of tankyrase 1 and tankyrase 2 (TNKS1/2), regulators of the ß-catenin destruction complex. Inhibition of TNKS1/2 poly(ADP-ribosyl)ation activity by JW55 led to stabilization of AXIN2, a member of the ß-catenin destruction complex, followed by increased degradation of ß-catenin. In a dose-dependent manner, JW55 inhibited canonical Wnt signaling in colon carcinoma cells that contained mutations in either the APC (adenomatous polyposis coli) locus or in an allele of ß-catenin. In addition, JW55 reduced XWnt8-induced axis duplication in Xenopus embryos and tamoxifen-induced polyposis formation in conditional APC mutant mice. Together, our findings provide a novel chemotype for targeting canonical Wnt/ß-catenin signaling through inhibiting the PARP domain of TNKS1/2.


Subject(s)
Colonic Neoplasms/drug therapy , Enzyme Inhibitors/pharmacology , Genes, APC/physiology , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , para-Aminobenzoates , Animals , Axin Protein/analysis , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Knockout , Xenopus laevis , beta Catenin/chemistry , beta Catenin/physiology , para-Aminobenzoates/pharmacology
10.
Dev Biol ; 354(1): 1-8, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21458440

ABSTRACT

We present a genetic map for Xenopus tropicalis, consisting of 2886 Simple Sequence Length Polymorphism (SSLP) markers. Using a bioinformatics-based strategy, we identified unique SSLPs within the X. tropicalis genome. Scaffolds from X. tropicalis genome assembly 2.0 (JGI) were scanned for Simple Sequence Repeats (SSRs); unique SSRs were then tested for amplification and polymorphisms using DNA from inbred Nigerian and Ivory Coast individuals. Thus identified, the SSLPs were genotyped against a mapping cross panel of DNA samples from 190 F2 individuals. Nearly 4000 SSLPs were genotyped, yielding a 2886-marker genetic map consisting of 10 major linkage groups between 73 and 132cM in length, and 4 smaller linkage groups between 7 and 40cM. The total effective size of the map is 1658cM, and the average intermarker distance for each linkage group ranged from 0.27 to 0.75cM. Fluorescence In Situ Hybridization (FISH) was carried out using probes for genes located on mapped scaffolds to assign linkage groups to chromosomes. Comparisons of this map with the X. tropicalis genome Assembly 4.1 (JGI) indicate that the map provides representation of a minimum of 66% of the X. tropicalis genome, incorporating 758 of the approximately 1300 scaffolds over 100,000bp. The genetic map and SSLP marker database constitute an essential resource for genetic and genomic analyses in X. tropicalis.


Subject(s)
Chromosome Mapping/methods , Genetic Markers/genetics , Spectral Karyotyping/methods , Xenopus/genetics , Animals , Chromosome Banding , Genome/genetics , Genotype , Internet , Minisatellite Repeats/genetics , Polymorphism, Genetic , Xenopus Proteins/genetics
11.
Cell Signal ; 23(5): 837-48, 2011 May.
Article in English | MEDLINE | ID: mdl-21244856

ABSTRACT

The Wnt family of proteins is a group of extracellular signalling molecules that regulate cell-fate decisions in developing and adult tissues. It is presumed that all 19 mammalian Wnt family members contain two types of post-translational modification: the covalent attachment of fatty acids at two distinct positions, and the N-glycosylation of multiple asparagines. We examined how these modifications contribute to the secretion, extracellular movement and signalling activity of mouse Wnt1 and Wnt3a ligands. We revealed that O-linked acylation of serine is required for the subsequent S-palmitoylation of cysteine. As such, mutant proteins that lack the crucial serine residue are not lipidated. Interestingly, although double-acylation of Wnt1 was indispensable for signalling in mammalian cells, in Xenopus embryos the S-palmitoyl-deficient form retained the signalling activity. In the case of Wnt3a, the functional duality of the attached acyls was less prominent, since the ligand lacking S-linked palmitate was still capable of signalling in various cellular contexts. Finally, we show that the signalling competency of both Wnt1 and Wnt3a is related to their ability to associate with the extracellular matrix.


Subject(s)
Cysteine/metabolism , Serine/metabolism , Wnt Proteins/metabolism , Wnt1 Protein/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Embryonic Development , Humans , Lipoylation , Mice , Molecular Sequence Data , Mutation , Rats , Wnt Proteins/genetics , Wnt1 Protein/genetics , Wnt3 Protein , Wnt3A Protein , Xenopus/embryology , Xenopus/metabolism , Xenopus Proteins
12.
Dev Dyn ; 238(6): 1398-46, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19441086

ABSTRACT

Pilot forward genetic screens in Xenopus tropicalis have isolated over 60 recessive mutations. Here we present a simple method for mapping mutations to chromosomes using gynogenesis and centromeric markers. When coupled with available genomic resources, gross mapping facilitates evaluation of candidate genes as well as higher resolution linkage studies. Using gynogenesis, we have mapped the genetic locations of the 10 X. tropicalis centromeres, and performed fluorescence in situ hybridization to validate these locations cytologically. We demonstrate the use of this very small set of centromeric markers to map mutations efficiently to specific chromosomes. Developmental Dynamics 238:1398-1406, 2009. (c) 2009 Wiley-Liss, Inc.


Subject(s)
Chromosome Mapping/methods , Chromosomes , Mutation , Xenopus/genetics , Animals , Centromere/genetics , Female , Genetic Markers , Male , Meiosis/physiology , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...