Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(15): 4622-4631, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33819051

ABSTRACT

Efficient carbon capture from stationary point sources can be achieved using hybrid adsorbents comprising nanoporous substrates coated with imine polymers. The physical properties of the CO2-adsorbing, nanodispersed polymers are altered by their interactions with the substrate, which in turn may impact their capture capacity. We study silica and carbon nanoporous substrates with different pore morphologies that were impregnated with polymer imine with the goal of characterizing the polymer dispersions in the pores. For silica and carbon samples, the mean densities of confined poly(ethylene imine) (PEI) were measured as functions of polymer loading and temperature using small-angle neutron scattering. Strong densification is found for imine polymers imbibed in mesoporous carbon. PEI in nanoporous silica does not experience this strong densification. At high loadings, plugs form, preferably at the pore throats, and can reduce accessible porosity. CO2 capture measurements show that PEI interactions with the substrate play an important role. PEI in carbon shows the highest capture capacity at low temperatures and the lowest CO2 adsorption at high temperatures, making it well-suited for temperature swing adsorption applications.

2.
J Am Chem Soc ; 139(44): 15624-15627, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29059518

ABSTRACT

Time-resolved in situ IR was performed during selective catalytic reduction of NO with NH3 on supported V2O5-WO3/TiO2 catalysts to examine the distribution and reactivity of surface ammonia species on Lewis and Brønsted acid sites. While both species were found to participate in the SCR reaction, their relative population depends on the coverage of the surface vanadia and tungsta sites, temperature, and moisture. Although the more abundant surface NH4+,ads intermediates dominate the overall SCR reaction, especially for hydrothermally aged catalysts, the minority surface NH3,ads intermediates exhibit a higher specific SCR activity (TOF). The current study serves to resolve the long-standing controversy about the active sites for SCR of NO with NH3 by supported V2O5-WO3/TiO2 catalysts.

3.
Chemistry ; 22(31): 10743-7, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27253350

ABSTRACT

Both known and new CC3-based porous organic cages are prepared and exposed to acidic SO2 in vapor and liquid conditions. Distinct differences in the stability of the CC3 cages exist depending on the chirality of the diamine linkers used. The acid catalyzed CC3 degradation mechanism is probed via in situ IR and a degradation pathway is proposed and supported with computational results. CC3 crystals synthesized with racemic mixtures of diaminocyclohexane exhibited enhanced stability compared to CC3-R and CC3-S. Confocal fluorescent microscope images reveal that the stability difference in CC3 species originates from an abundance of mesoporous grain boundaries in CC3-R and CC3-S, allowing facile access of aqueous SO2 throughout the crystal, promoting decomposition. These grain boundaries are absent from CC3 crystals made with racemic linkers.

4.
ChemSusChem ; 8(21): 3651-60, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26403156

ABSTRACT

High-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequence Cu-CeO2 >La-CeO2 >Zr-CeO2 ≈CeO2 >Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. The role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2.


Subject(s)
Carbon Dioxide/isolation & purification , Cerium/chemistry , Copper/chemistry , Lanthanum/chemistry , Magnesium/chemistry , Zirconium/chemistry , Adsorption , Carbon Dioxide/chemistry , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Particle Size , Porosity , Spectrum Analysis, Raman , Surface Properties
5.
Nanoscale ; 7(16): 7368-77, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25824693

ABSTRACT

Nanoinks are currently a topic of heightened interest with respect to low temperature bonding processes and printable electronics. We have developed an innovative polyvinylpyrrolidone (PVP)-stabilized Ag nanoplate ink amenable to very strong low temperature packaging, and investigated the relationship between bonding strength and electrical conductivity post-bonding. PVP shell plastic deformations observed in failure microcracks with the formation of PVP nanofibers, revealed bonding strength at low temperatures (<250 °C) was primarily due to adhesive bonding. It is found that, utilizing photonic sintering, ∼ 70 °C reduction of transformation temperature from adhesive to metallic bonding was achieved compared to that of thermal sintering. A numerical simulation was developed to better understand the influences of the light-induced heat generation, which demonstrated near-infrared light can facilitate sintering. Bonding strengths of 27 MPa were achieved at room temperatures, and 29.4 MPa at 210 °C with photonic sintering. Moreover, the anisotropic resistivity was observed with different thermal dependences. These results demonstrate Ag nanoplate inks have potential for low temperature 3D interconnections in lead-free microcircuits, flexible electronic packaging, and diverse sensing applications.

6.
Langmuir ; 30(25): 7405-13, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24897297

ABSTRACT

In situ Fourier transform infrared spectroscopy was used to determine the nature of adsorbed CO2 on class I (amine-impregnated) and class II (amine-grafted) sorbents with different amine densities. Adsorbed CO2 on amine sorbents exists in the form of carbamate-ammonium ion pairs, carbamate-ammonium zwitterions, and carbamic acid. The adsorbed CO2 on high-amine density sorbents showed that the formation of ammonium ions correlates with the suppression of CH stretching intensities. An HCl probing technique was used to resolve the characteristic infrared bands of ammonium ions, clarifying that the band observed around 1498 cm(-1) is a combination of the deformation vibration of ammonium ion (NH3(+)) at 1508 and 1469 cm(-1) and the deformation vibration of NH in carbamate (NHCOO(-)) at 1480 cm(-1). Carbamate and carbamic acid on sorbents with low amine density desorbed at a rate faster than those on sorbents with high amine density after switching the flow from CO2 to Ar at 55 °C. Evaluation of the desorption temperature profiles showed that the temperature required to achieve the maximal desorption of CO2 (Tmax. des) increases with amine density. The adsorbed CO2 on sorbents with high amine density is stabilized via hydrogen bonding interactions with adjacent amine sites. These sorbents require higher temperature to desorb CO2 than those with low amine density.

SELECTION OF CITATIONS
SEARCH DETAIL
...