Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 162(2-3): 1073-80, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18620805

ABSTRACT

Polyethyleneglycolmethacrylate (PEGMA) and vinylimidazole (VI) were used in order to obtain microspheres of PEGMA-VI copolymers that can be used in heavy metal removal applications. The obtained copolymers were characterized and their use as sorbents in heavy metal removal was investigated. In the first part of the study, PEGMA-VI microspheres were prepared by suspension polymerization method. The obtained swellable microspheres with 10-50 microm average diameter did not have permanent porosity according to the morphological and physicochemical determinations. The sizes of microspheres became smaller with increasing VI and cross-linker ethyleneglycoldimethacrylate (EGDMA) contents and increasing agitation rate. The VI content, EGDMA ratio, pH and ionic strength were determined as the effective parameters on the swelling behavior of PEGMA-VI microspheres. In the second part of the study, Cu(II) ions were used as a model species in order to investigate the usability of the obtained PEGMA-VI microspheres in heavy metal removal. Adsorption capacities under optimum conditions were determined. The Cu(II) ion adsorption capacity increased by increasing the initial Cu(II) ion concentration, and it reached the maximum value (i.e., 30 mg Cu(II)/g PEGMA-VI microspheres) at 400 mg Cu(II)/L initial Cu(II) ion concentration under the determined optimum conditions. Microspheres were found to be reusable after desorption for several times.


Subject(s)
Metals, Heavy/isolation & purification , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Adsorption , Microspheres
2.
J Hazard Mater ; 155(1-2): 114-20, 2008 Jun 30.
Article in English | MEDLINE | ID: mdl-18164127

ABSTRACT

Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) [poly(VP-PEGMA-EGDMA)] beads with an average size of 30-100 microm were prepared by suspension polymerization. Poly(VP-PEGMA-EGDMA) beads were characterized by swelling studies, scanning electron microscopy (SEM), elemental analysis, Fourier Transform Infrared Spectroscopy (FTIR). The beads with a swelling ratio of 65% were used for the heavy metal removal studies. Chelation capacity of the beads for the selected metal ions, i.e., Pb(II), Cd(II), Cr(III) and Cu(II) were investigated in aqueous media containing different amounts of these ions (5-80 mg/l) and at different pH values (2.0-10.0). The maximum chelation capacities of the poly(VP-PEGMA-EGDMA) beads were 18.23 mg/g for Pb(II), 16.50 mg/g for Cd(II), 17.38 mg/g for Cr(III) and 18.25 mg/g for Cu(II). The affinity order on mass basis was observed as follows: Cu(II)>Pb(II)>Cr(III)>Cd(II). pH significantly affected the chelation capacity of VP incorporated beads. Heavy metal adsorption on the poly(PEGMA-EGDMA) control microspheres was negligible. Regeneration of the chelating beads was easily performed with 0.1 M HNO3. It was shown that these beads can be used effectively for heavy metal removal from aqueous solutions with repeatedly adsorption-desorption operations. These features show that poly(VP-PEGMA-EGDMA) beads are potential candidate sorbent for heavy metal removal.


Subject(s)
Metals, Heavy/chemistry , Methacrylates/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration
3.
J Mol Model ; 11(1): 55-60, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15592689

ABSTRACT

In this paper, we have investigated the lower critical solution temperature (LCST) of N-isopropylacrylamide-acrylic acid (NIPAAm-AAc) copolymer as a function of chain-transfer agent/initiator mole ratio, acrylic acid content of copolymer, concentration, pH and ionic strength of aqueous copolymer solution. Aqueous solutions with the desired properties were prepared from previously purified polymers, synthesized at 65 degrees C by solution polymerization using ethanol. The effects of each parameter on the LCST were examined experimentally. In addition, an artificial neural network model that is able to predict the lower critical solution temperature was developed. The predictions from this model compare well against both training and test data sets with an average error less than 2.53%.


Subject(s)
Acrylamides/chemistry , Acrylates/chemistry , Neural Networks, Computer , Polymers/chemistry , Models, Molecular , Phase Transition , Solubility , Solutions , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...