Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biotech Histochem ; 96(4): 311-314, 2021 May.
Article in English | MEDLINE | ID: mdl-33325738

ABSTRACT

Methicillin resistant Staphylococcus aureus infections are increasing, especially in intensive care units. A new method for photodynamic inactivation (PDI) generates reactive oxygen species by photosensitization to kill bacteria. We investigated the PDI effect of tetraethylene glycol-substituted Zn(II) phthalocyanine (TEG-P) on S. aureus strains including two standards (ATCC 25923 and ATCC 43400) and 20 clinically isolated methicillin sensitive and 20 methicillin resistance strains. We also investigated three treated groups: 650 nm laser only, TEG-P only and TEG-P + laser, plus one control group. Treatments included 0.5, 1, 2, 4, 8, 16, 32 µg/ml concentrations of TEG-P. No suppression of bacterial growth was observed in the control, laser only and TEG-P only groups whether or not S. aureus was methicillin resistant. Bacterial growth was suppressed by 85% using 8 µg/ml TEG-P and completely suppressed by 32 µg/ml TEG-P in the TEG-P + laser group. A combination of TEG-P + laser treatment may be an alternative to conventional antibiotics for routine treatment of S. aureus infections, although further investigation of the effect at the tissue level is required.


Subject(s)
Staphylococcus aureus , Anti-Bacterial Agents , Humans , Indoles , Isoindoles , Photosensitizing Agents , Polyethylene Glycols , Staphylococcal Infections , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...