Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35206455

ABSTRACT

Background: Recent advances in mobile and wearable technologies have led to new forms of interventions, called "Just-in-Time Adaptive Interventions" (JITAI). JITAIs interact with the individual at the most appropriate time and provide the most appropriate support depending on the continuously acquired Intensive Longitudinal Data (ILD) on participant physiology, behavior, and contexts. These advances raise an important question: How do we model these data to better understand and intervene on health behaviors? The HeartSteps II study, described here, is a Micro-Randomized Trial (MRT) intended to advance both intervention development and theory-building enabled by the new generation of mobile and wearable technology. Methods: The study involves a year-long deployment of HeartSteps, a JITAI for physical activity and sedentary behavior, with 96 sedentary, overweight, but otherwise healthy adults. The central purpose is twofold: (1) to support the development of modeling approaches for operationalizing dynamic, mathematically rigorous theories of health behavior; and (2) to serve as a testbed for the development of learning algorithms that JITAIs can use to individualize intervention provision in real time at multiple timescales. Discussion and Conclusions: We outline an innovative modeling paradigm to model and use ILD in real- or near-time to individually tailor JITIAs.


Subject(s)
Sedentary Behavior , Telemedicine , Adult , Behavior Therapy , Exercise , Health Behavior , Humans , Randomized Controlled Trials as Topic , Telemedicine/methods
2.
Article in English | MEDLINE | ID: mdl-37736024

ABSTRACT

In this paper we present BayesLDM, a library for Bayesian longitudinal data modeling consisting of a high-level modeling language with specific features for modeling complex multivariate time series data coupled with a compiler that can produce optimized probabilistic program code for performing inference in the specified model. BayesLDM supports modeling of Bayesian network models with a specific focus on the efficient, declarative specification of dynamic Bayesian Networks (DBNs). The BayesLDM compiler combines a model specification with inspection of available data and outputs code for performing Bayesian inference for unknown model parameters while simultaneously handling missing data. These capabilities have the potential to significantly accelerate iterative modeling workflows in domains that involve the analysis of complex longitudinal data by abstracting away the process of producing computationally efficient probabilistic inference code. We describe the BayesLDM system components, evaluate the efficiency of representation and inference optimizations and provide an illustrative example of the application of the system to analyzing heterogeneous and partially observed mobile health data.

SELECTION OF CITATIONS
SEARCH DETAIL
...