Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 27(10): 105503, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25710627

ABSTRACT

The electronic structure of La(1-x)Lu(x)VO(3)(x = 0, 0.2, 0.6 and 1) single crystals has been investigated using soft x-ray absorption spectroscopy, soft x-ray emission spectroscopy, and resonant soft x-ray inelastic scattering to study the effects of rare-earth size. The x-ray absorption and emission spectra at the O K-edge present a progressive evolution with R-site cation, in agreement with local spin density approximation calculations. This evolution with R, together with the temperature dependence of the O K-edge spectra, is attributed to changes in the crystal structure of La(1-x)Lu(x)VO(3). The crystal-field dd. excitations probed by resonant inelastic x-ray scattering at the V L(3)-edge exhibit an increase in energy and enhanced intensity with the decrease of R-site ionic radius, which is mainly attributed to the increased tilting magnitude of the VO(6) octahedra. Upon cooling to ~95 K, the dd* excitations are prominently enhanced in relative Intensity, in agreement with the formation of the Jahn.Teller distortion int he orbital ordering phase. Additionally, the dd* transitions of the mixed compounds are noticeably suppressed with respect to those of the pure compounds, possibly owing to the formation of C-type orbital ordering induced by large R-site size variances.

2.
J Phys Condens Matter ; 26(45): 455603, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25336521

ABSTRACT

The electronic structure of NdVO(3) and YVO(3) has been investigated as a function of sample temperature using resonant inelastic soft x-ray scattering at the V L(3)-edge. Most of the observed spectral features are in good agreement with an atomic crystal-field multiplet model. However, a low energy feature is observed at ∼ 0.4 eV that cannot be explained by crystal-field arguments. The resonant behaviour of this feature establishes it as due to excitations of the V t(2g) states. Moreover, this feature exhibits a strong sample temperature dependence, reaching maximum intensity in the orbitally-ordered phase of NdVO(3), before becoming suppressed at low temperatures. This behaviour indicates that the origin of this feature is a collective orbital excitation, i.e. the bi-orbiton.

SELECTION OF CITATIONS
SEARCH DETAIL
...