Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(9): e2306876, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37899660

ABSTRACT

Nanorobots capable of active movement are an exciting technology for targeted therapeutic intervention. However, the extensive motion range and hindrance of the blood-brain barrier impeded their clinical translation in glioblastoma therapy. Here, a marsupial robotic system constructed by integrating chemical/magnetic hybrid nanorobots (child robots) with a miniature magnetic continuum robot (mother robot) for intracranial cross-scale targeting drug delivery is reported. For primary targeting on macroscale, the continuum robot enters the cranial cavity through a minimally invasive channel (e.g., Ommaya device) in the skull and transports the nanorobots to pathogenic regions. Upon circumventing the blood-brain barrier, the released nanorobots perform secondary targeting on microscale to further enhance the spatial resolution of drug delivery. In vitro experiments against primary glioblastoma cells derived from different patients are conducted for personalized treatment guidance. The operation feasibility within organisms is shown in ex vivo swine brain experiments. The biosafety of the treatment system is suggested in in vivo experiments. Owing to the hierarchical targeting method, the targeting rate, targeting accuracy, and treatment efficacy have improved greatly. The marsupial robotic system offers a novel intracranial local therapeutic strategy and constitutes a key milestone in the development of glioblastoma treatment platforms.


Subject(s)
Glioblastoma , Marsupialia , Robotic Surgical Procedures , Child , Humans , Animals , Swine , Glioblastoma/drug therapy , Drug Delivery Systems , Skull
2.
ACS Nano ; 16(9): 14895-14906, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36067035

ABSTRACT

Superhydrophobic microrobots that can swim efficiently and rapidly on water under the action of external stimuli have attracted significant research attention for various applications. However, most studies on superhydrophobic microrobots have focused on single-stimulus driving modes, which limit the motion and functional applications of microrobots in complex aquatic environments. Therefore, multistimuli-responsive superhydrophobic microrobots that are capable of drifting rapidly on water through light, magnetic, and chemical control were developed in this study. The stability and environmental adaptability of the microrobots were systematically investigated. The microrobots achieved programmable trajectory motion on water, particularly complex motions such as circular, spiral, and helical movements under the coupled influence of chemical and magnetic fields. Importantly, the motion and control of multimicrorobots can be realized by combining control methods. Under the action of light and magnetic field, multimicrorobots could realize cooperative movement and completed the transportation of cargo. Additionally, broad multifunctional applications of the microrobots were explored in terms of oil spill recovery and solution mix. This study provides a method for the preparation and development of superhydrophobic microrobots with multistimuli-responsive characteristics.


Subject(s)
Magnetic Fields , Magnetics , Hydrophobic and Hydrophilic Interactions , Motion , Water
3.
IEEE Open J Nanotechnol ; 3: 124-130, 2022.
Article in English | MEDLINE | ID: mdl-37284032

ABSTRACT

Precision DNA translocation control is critical for achieving high accuracy in single molecule-based DNA sequencing. In this report, we describe an atomic force microscopy (AFM) based method to linearize a double-stranded DNA strand during the translocation process and characterize the electrical properties of the moving DNA using a platinum (Pt) nanoelectrode gap. In this method, λDNAs were first deposited on a charged mica substrate surface and topographically scanned. A single DNA suitable for translocation was then identified and electrostatically attached to an AFM probe by pressing the probe tip down onto one end of the DNA strand without chemical functionalizations. Next, the DNA strand was lifted off the mica surface by the probe tip. The pulling force required to completely lift off the DNA agreed well with the theoretical DNA adhesion force to a charged mica surface. After liftoff, the captured DNA was translocated at varied speeds across the substrate and ultimately across the Pt nanoelectrode gap for electrical characterizations. Finally, finite element analysis of the effect of the translocating DNA on the conductivity of the nanoelectrode gap was conducted, validating the range of the gap current measured experimentally during the DNA translocation process.

4.
ACS Appl Mater Interfaces ; 13(27): 31514-31526, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34213305

ABSTRACT

Micro/nanomotors (MNMs), which propel by transforming various forms of energy into kinetic energy, have emerged as promising therapeutic nanosystems in biomedical applications. However, most MNMs used for anticancer treatment are only powered by one engine or provide a single therapeutic strategy. Although double-engined micromotors for synergistic anticancer therapy can achieve more flexible movement and efficient treatment efficacy, their design remains challenging. In this study, we used a facile preparation method to develop enzymatic/magnetic micromotors for synergetic cancer treatment via chemotherapy and starvation therapy (ST), and the size of micromotors can be easily regulated during the synthetic process. The enzymatic reaction of glucose oxidase, which served as the chemical engine, led to self-propulsion using glucose as a fuel and ST via a reduction in the energy available to cancer cells. Moreover, the incorporation of Fe3O4 nanoparticles as a magnetic engine enhanced the kinetic power and provided control over the direction of movement. Inherent pH-responsive drug release behavior was observed owing to the acidic decomposition of drug carriers in the intracellular microenvironment of cancer cells. This system displayed enhanced anticancer efficacy owing to the synergetic therapeutic strategies and increased cellular uptake in a targeted area because of the improved motion behavior provided by the double engines. Therefore, the demonstrated micromotors are promising candidates for anticancer biomedical microsystems.


Subject(s)
Glucose Oxidase/metabolism , Magnetic Phenomena , Microtechnology/methods , Neoplasms/therapy , Cell Line, Tumor , Drug Carriers/chemistry , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Magnetite Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/pathology
5.
Bioinspir Biomim ; 14(6): 066015, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31557748

ABSTRACT

Carpenter ants possess the characteristics of division of labor, communication between individuals, cooperation, and the ability to solve problems. Inspired by the carpenter ant, we designed electromagnetically controlled ant millirobots that can move, clamp, and work cooperatively. The robot can receive power wirelessly to actuate its ionic polymer-metal composite gripper. Further, two robots can be controlled to manipulate small components individually or cooperatively. Dual-robot manipulation is found to take 76.7% of the time required for single-robot manipulation. The results show that complicated manipulation can be performed by robots that are multifunctional and flexible by utilizing electromagnetic actuation, intelligent materials, and wireless power transmission.


Subject(s)
Ants/physiology , Robotics/instrumentation , Animals , Equipment Design , Motion , Wireless Technology
6.
ACS Appl Mater Interfaces ; 11(33): 30290-30299, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31361459

ABSTRACT

Highly deformable and photoresponsive smart actuators are attracting increasing attention. Here, a high concentration of graphene is dispersed in polydimethylsiloxane (PDMS) by combining the advantages of various dispersion methods. The composite and pure PDMS layers are used to fabricate bilayer actuators with a high capacity for rapid deformation. The fabricated bilayer actuators exhibit novel and interesting properties. A bilayer actuator containing a 30 wt % graphene composite can be deflected by 7.9 mm in the horizontal direction under infrared laser irradiation. The graphene concentration in the composite influences actuator adjustment to deformation and its response speed, and the composite also exhibits superhydrophobicity. On the basis of its superhydrophobicity and large deformation capacity, the actuator made with 30 wt % graphene composite is used to construct a beluga whale soft robot. The robot can swim quickly in water at an average speed of 6 mm/s, and it can cover a distance of 30 mm in 5 s when irradiated just once with an infrared laser. Actuators fabricated with this method can be used in artificial muscle, bionic grippers, and various soft robots that require actuators with large deformation capacities.

7.
Biomed Microdevices ; 21(1): 15, 2019 02 11.
Article in English | MEDLINE | ID: mdl-30741351

ABSTRACT

Female anglerfishes have a lantern-shape luminous organ sprouting from the middle of their heads to lure their prey in the dark deep sea. Inspired by the anglerfish, we designed an electromagnetic anglerfish-shaped millirobot that can receive energy and transform it into light to attract algae cells to specific locations. The small wireless powered robot can receive about 658 mW of power from external energy supply coils, and light LEDs (light-emitting diodes). The wireless power generation and moving control of the robot are analyzed systematically. Transmitting electric energy to smaller scale receivers to endow milli or micro robots with wireless power function is an interesting and promising research direction. With this function, the wireless powered robot is expected to be extensively used at the small scale in the near future, such as to provide electricity to drive microdevices (microgrippers, microsensors, etc.), provide light or heat in small-scale space, stimulate/kill pathological cells in minimally invasive treatment and so on.


Subject(s)
Electric Power Supplies , Electromagnetic Fields , Robotics , Wireless Technology , Equipment Design
8.
Lab Chip ; 17(12): 2046-2053, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28513721

ABSTRACT

Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 µm s-1. Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.


Subject(s)
Electrophoresis , Microfluidic Analytical Techniques , Micromanipulation , Optics and Photonics , Cell Movement , Chlamydomonas reinhardtii , Equipment Design , Image Processing, Computer-Assisted
9.
Microsyst Nanoeng ; 3: 16084, 2017.
Article in English | MEDLINE | ID: mdl-31057852

ABSTRACT

In this paper, we describe a novel and simple process for the fabrication of all-transparent and encapsulated polymeric nanofluidic devices using nano-indentation lithography. First, a nanomechanical probe is used to 'scratch' nanoscale channels on polymethylmethacrylate (PMMA) substrates with sufficiently high hardness. Next, polydimethylsiloxane (PDMS) is used twice to duplicate the nanochannels onto PDMS substrates from the 'nano-scratched' PMMA substrates. A number of experiments are conducted to explore the relationships between the nano-indentation parameters and the nanochannel dimensions and to control the aspect ratio of the fabricated nanochannels. In addition, traditional photolithography combined with soft lithography is employed to fabricate microchannels on another PDMS 'cap' substrate. After manually aligning the substrates, all uncovered channels on two separate PDMS substrates are bonded to achieve a sealed and transparent nanofluidic device, which makes the dimensional transition from microscale to nanoscale feasible. The smallest dimensions of the achievable nanochannels that we have demonstrated thus far are of ~20 nm depth and ~800 nm width, with lengths extendable beyond 100 µm. Fluid flow experiments are performed to verify the reliability of the device. Two types of colloidal solution are used to visualize the fluid flow through the nanochannels, that is, ethanol is mixed with gold colloid or fluorescent dye (fluorescein isothiocyanate), and the flow rate and filling time of liquid in the nanochannels are estimated based on time-lapsed image data. The simplicity of the fabrication process, bio-compatibility of the polymer substrates, and optical transparency of the nanochannels for flow visualization are key characteristics of this approach that will be very useful for nanofluidic and biomolecular research applications in the future.

10.
Biomed Microdevices ; 18(3): 47, 2016 06.
Article in English | MEDLINE | ID: mdl-27206511

ABSTRACT

Algae cells can be considered as microrobots from the perspective of engineering. These organisms not only have a strong reproductive ability but can also sense the environment, harvest energy from the surroundings, and swim very efficiently, accommodating all these functions in a body of size on the order of dozens of micrometers. An interesting topic with respect to random swimming motions of algae cells in a liquid is how to precisely control them as microrobots such that they swim according to manually set routes. This study developed an ingenious method to steer swimming cells based on the phototaxis. The method used a varying light signal to direct the motion of the cells. The swimming trajectory, speed, and force of algae cells were analyzed in detail. Then the algae cell could be controlled to swim back and forth, and traverse a crossroad as a microrobot obeying specific traffic rules. Furthermore, their motions along arbitrarily set trajectories such as zigzag, and triangle were realized successfully under optical control. Robotize algae cells can be used to precisely transport and deliver cargo such as drug particles in microfluidic chip for biomedical treatment and pharmacodynamic analysis. The study findings are expected to bring significant breakthrough in biological drives and new biomedical applications.


Subject(s)
Cell Movement/physiology , Robotics/instrumentation , Volvocida/cytology , Light , Microfluidics , Models, Molecular
11.
J Lab Autom ; 21(3): 387-93, 2016 Jun.
Article in English | MEDLINE | ID: mdl-25824205

ABSTRACT

A fully automated microfluidic-based detection system for the rapid determination of insulin concentration through a chemiluminescence immunoassay has been developed. The microfluidic chip used in the system is a double-layered polydimethylsiloxane device embedded with interconnecting micropumps, microvalves, and a micromixer. At a high injection rate of the developing solution, the chemiluminescence signal can be excited and measured within a short period of time. The integral value of the chemiluminescence light signal is used to determine the insulin concentration of the samples, and the results indicate that the measurement is accurate in the range from 1.5 pM to 391 pM. The entire chemiluminescence assay can be completed in less than 10 min. The fully automated microfluidic-based insulin detection system provides a useful platform for rapid determination of insulin in clinical diagnostics for diabetes, which is expected to become increasingly important for future point-of-care applications.


Subject(s)
Automation, Laboratory/methods , Diabetes Mellitus/diagnosis , Hypoglycemic Agents/analysis , Immunoassay/methods , Insulin/blood , Lab-On-A-Chip Devices , Luminescent Measurements/methods , Microfluidics/methods , Point-of-Care Systems , Time Factors
12.
Micromachines (Basel) ; 7(11)2016 Nov 23.
Article in English | MEDLINE | ID: mdl-30404383

ABSTRACT

Recently, wireless controlled microrobots have been studied because of their great development prospects in the biomedical field. Electromagnetic microrobots have the advantages of control agility and good precision, and thus, have received much attention. Most of the control methods for controlling a magnetic microrobot use manual operation. Compared to the manual method, the automatic method will increase the accuracy and stability of locomotion and manipulation of microrobots. In this paper, we propose an electromagnetic manipulation system for automatically controlling the locomotion and manipulation of microrobots. The microrobot can be automatically controlled to track various paths by using visual feedback with an expert control algorithm. A positioning accuracy test determined that the position error ranges from 92 to 293 µm, which is less than the body size (600 µm) of the microrobot. The velocity of the microrobot is nearly proportional to the applied current in the coils, and can reach 5 mm/s. As a micromanipulation tool, the microrobot is used to manipulate microspheres and microgears with the automatic control method. The results verify that the microrobot can drag, place, and drive the microstructures automatically with high precision. The microrobot is expected to be a delicate micromachine that could play its role in microfluidics and blood vessels, where conventional instruments are hard to reach.

13.
Sensors (Basel) ; 15(8): 18565-78, 2015 Jul 29.
Article in English | MEDLINE | ID: mdl-26230699

ABSTRACT

In this research a DNA aptamer, which was selected through SELEX (systematic evolution of ligands by exponential enrichment) to be specific against the H5N1 subtype of the avian influenza virus (AIV), was used as an alternative reagent to monoclonal antibodies in an impedance biosensor utilizing a microfluidics flow cell and an interdigitated microelectrode for the specific detection of H5N1 AIV. The gold surface of the interdigitated microelectrode embedded in a microfluidics flow cell was modified using streptavidin. The biotinylated aptamer against H5N1 was then immobilized on the electrode surface using biotin-streptavidin binding. The target virus was captured on the microelectrode surface, causing an increase in impedance magnitude. The aptasensor had a detection time of 30 min with a detection limit of 0.0128 hemagglutinin units (HAU). Scanning electron microscopy confirmed the binding of the target virus onto the electrode surface. The DNA aptamer was specific to H5N1 and had no cross-reaction to other subtypes of AIV (e.g., H1N1, H2N2, H7N2). The newly developed aptasensor offers a portable, rapid, low-cost alternative to current methods with the same sensitivity and specificity.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/instrumentation , Influenza A Virus, H5N1 Subtype/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Animals , Birds/virology , Electric Impedance , Influenza in Birds/virology
14.
Article in English | MEDLINE | ID: mdl-26284237

ABSTRACT

Molecular motors, which are precision engineered by nature, offer exciting possibilities for bio-hybrid engineered systems. They could enable real applications ranging from micro/nano fluidics, to biosensing, to medical diagnoses. This review describes the fundamental biological insights and fascinating potentials of these remarkable sensing and actuation machines, in particular, bacterial flagellar motors, as well as their engineering perspectives with regard to applications in bio-engineered hybrid systems.

15.
J Lab Autom ; 20(4): 365-89, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25878051

ABSTRACT

The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Point-of-Care Systems , Humans
16.
J Biomed Nanotechnol ; 9(6): 1065-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23858971

ABSTRACT

Single-walled carbon nanotube (SWNT) can be functionalized to target cells for drug delivery or cancer cells for their detection and therapy. Understanding their transport phenomena in vivo is a necessary step to unlock their medical potential. This work estimates the diffusion characteristics of SWNTs and their DNA-conjugated bio-hybrids under simulated or postulated physiological conditions using EPI-fluorescence microscopy (EFM). SWNT was shortened and dispersed in aqueous solution with the average length and diameter of 253 nm (+/-30.6 nm) and 1.6 nm (+/-0.34 nm), respectively, and tagged with a fluorophore, 1-pyrenebutanoic succinimidyl ester (PSE), through non-covalent pi stacking. DNA was attached to the PSE-SWNTs through carboxiimide based coupling procedure. Using the EFM, real-time videos were recorded under four different viscosities corresponding to four kinds of human body fluids: lymph (1.4 cP), bile (2.4 cP), blood (3-6 cP), and cytoplasm (10-30 cP), and processed to calculate diffusion coefficients based on random walk and speed. At 37 degreeC, diffusion coefficients of the SWNTs were estimated to be: 1.45 (+/-0.652) x 10(4) nm2/s (lymph), 0.91 (+/-0.205) x 10(4) nm2/s (bile), 0.59 (+/-0.179)x 10(4) nm2/s (blood), and 0.26 (+/-0.114)x 10(4) nm2/s (cytoplasm). Estimated diffusion coefficients of SWNT-DNA bio-hybrids were: 1.45 (+/-0.402) x 10(4) nm2/s (plasma), 0.62 (+/-0.212) x 10(4) nm2/s (bile), 0.41 (+/-0.142) x 10(4) nm2/s (blood), 0.38 (+/-0.257) x 10(4) nm2/s (cytoplasm). These outcomes should serve as key data for developing mathematical models of SWNT-based drug delivery, cell targeting, and its biodistribution.


Subject(s)
Body Fluids/chemistry , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Diffusion , Materials Testing , Particle Size , Viscosity
17.
J Food Prot ; 75(11): 1951-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127703

ABSTRACT

Listeria monocytogenes continues to be a major foodborne pathogen that causes food poisoning, and sometimes death, among immunosuppressed people and abortion among pregnant women. In this study, magnetic nanoparticles with a diameter of 30 nm were functionalized with anti-L. monocytogenes antibodies via biotin-streptavidin bonds to become immunomagnetic nanoparticles (IMNPs) to capture L. monocytogenes in a sample during a 2-h immunoreaction. A magnetic separator was used to collect and hold the IMNPs-L. monocytogenes complex while the supernatants were removed. After the washing step, the nanoparticle-L. monocytogenes complex was separated from the sample and injected into a microfluidic chip. The impedance change caused by L. monocytogenes was measured by an impedance analyzer through the interdigitated microelectrode in the microfluidic chip. For L. monocytogenes in phosphate-buffered saline solution, up to 75% of the cells in the sample could be separated, and as few as three to five cells in the microfluidic chip could be detected, which is equivalent to 10(3) CFU/ml of cells in the original sample. The detection of L. monocytogenes was not interfered with by other major foodborne bacteria, including E. coli O157:H7, E. coli K-12, L. innocua, Salmonella Typhimurium, and Staphylococcus aureus. A linear correlation (R(2) = 0.86) was found between the impedance change and the number of L. monocytogenes in a range of 10(3) to 10(7) CFU/ml. Equivalent circuit analysis indicated that the impedance change was mainly due to the decrease in medium resistance when the IMNPs-L. monocytogenes complexes existed in mannitol solution. Finally, the immunosensor was evaluated with food sample tests; the results showed that, without preenrichment and labeling, 10(4) and 10(5) CFU/ml L. monocytogenes in lettuce, milk, and ground beef samples could be detected in 3 h.


Subject(s)
Antibodies, Bacterial/analysis , Food Contamination/analysis , Immunomagnetic Separation/methods , Listeria monocytogenes , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Humans , Listeria monocytogenes/immunology , Listeria monocytogenes/isolation & purification , Nanoparticles , Sensitivity and Specificity
18.
Biosens Bioelectron ; 38(1): 67-73, 2012.
Article in English | MEDLINE | ID: mdl-22647532

ABSTRACT

Avian influenza virus (AIV) subtype H5N1 was first discovered in the 1990 s and since then its emergence has become a likely source of a global pandemic and economic loss. Currently accepted gold standard methods of influenza detection, viral culture and rRT-PCR, are time consuming, expensive and require special training and laboratory facilities. A rapid, sensitive, and specific screening method is needed for in-field or bedside testing of AI virus to effectively implement quarantines and medications. Therefore, the objective of this study was to improve the specificity and sensitivity of an impedance biosensor that has been developed for the screening of AIV H5. Three major components of the developed biosensor are immunomagnetic nanoparticles for the separation of AI virus, a microfluidic chip for sample control and an interdigitated microelectrode for impedance measurement. In this study polyclonal antibody against N1 subtype was immobilized on the surface of the microelectrode to specifically bind AIV H5N1 to generate more specific impedance signal and chicken red blood cells (RBC) were used as biolabels to attach to AIV H5N1 captured on the microelectrode to amplify impedance signal. RBC amplification was shown to increase the impedance signal change by more than 100% compared to the protocol without RBC biolabels, and was necessary for forming a linear calibration curve for the biosensor. The use of a second antibody against N1 offered much greater specificity and reliability than the previous biosensor protocol. The biosensor was able to detect AIV H5N1 at concentrations down to 10(3) EID(50)ml(-1) in less than 2h.


Subject(s)
Antibodies, Immobilized/immunology , Biosensing Techniques/methods , Birds/virology , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza in Birds/diagnosis , Animals , Biosensing Techniques/instrumentation , Chickens/immunology , Electric Impedance , Erythrocytes/immunology , Immunoassay/methods , Immunomagnetic Separation/methods , Influenza A Virus, H5N1 Subtype/immunology , Microelectrodes , Microfluidic Analytical Techniques/instrumentation , Sensitivity and Specificity
19.
J Virol Methods ; 178(1-2): 52-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21872621

ABSTRACT

Current methods for detection of avian influenza virus (AIV) based on virus culture and RT-PCR are well established, but they are either time consuming or require specialized laboratory facilities and highly trained technicians. A simple, rapid, robust, and reliable test, suitable for use in the field or at the patient's bedside, is urgently needed. In this study, the performance of a newly developed portable impedance biosensor was evaluated by comparison with real-time reverse transcriptase PCR (rRT-PCR) and virus culture for detection of AIV in tracheal and cloacal swab samples collected from experimentally H5N2 AIV infected chickens. The impedance biosensor system was based on a combination of magnetic nanobeads, which were coated with AIV subtype-specific antibody for capture (separation and concentration) of a target virus, and a microfluidic chip with an interdigitated array microelectrode for transfer and detection of target virus, and impedance measurement of the bio-nanobeads and AI virus complexes in a buffer solution. A comparison of results obtained from 59 swab samples using virus culture, impedance biosensor and rRT-PCR methods showed that the impedance biosensor technique was comparable in sensitivity and specificity to rRT-PCR. Detection time for the impedance biosensor is less than 1h.


Subject(s)
Biosensing Techniques/methods , Electric Impedance , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza in Birds/diagnosis , Point-of-Care Systems , Virology/methods , Animals , Antibodies, Viral , Chickens , Cloaca/virology , Influenza in Birds/virology , Magnetite Nanoparticles , Microfluidics , Sensitivity and Specificity , Trachea/virology
20.
Talanta ; 79(2): 159-64, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19559858

ABSTRACT

Continuous outbreaks of avian influenza (AI) in recent years with increasing threat to animals and human health have warranted the urgent need for rapid detection of pathogenic AI viruses. In this study, an impedance immunosensor based on an interdigitated array (IDA) microelectrode was developed as a new application for sensitive, specific and rapid detection of avian influenza virus H5N1. Polyclonal antibodies against AI virus H5N1 surface antigen HA (Hemagglutinin) were oriented on the gold microelectrode surface through protein A. Target H5N1 viruses were then captured by the immobilized antibody, resulting in a change in the impedance of the IDA microelectrode surface. Red blood cells (RBCs) were used as biolabels for further amplification of the binding reaction of the antibody-antigen (virus). The binding of target AI H5N1 onto the antibody-modified IDA microelectrode surface was further confirmed by atomic force microscopy. The impedance immunosensor could detect the target AI H5N1 virus at a titer higher than 10(3)EID(50)/ml (EID(50): 50% Egg Infective Dose) within 2h. The response of the antibody-antigen (virus) interaction was shown to be virus titer-dependent, and a linear range for the titer of H5N1 virus was found between 10(3) and 10(7)EID(50)/ml. Equivalent circuit analysis indicated that the electron transfer resistance of the redox probe [Fe(CN)(6)](3-/4-) and the double layer capacitance were responsible for the impedance change due to the protein A modification, antibody immobilization, BSA (bovine serum albumin) blocking, H5N1 viruses binding and RBCs amplification. No significant interference was observed from non-target RNA viruses such as Newcastle disease virus and Infectious Bronchitis disease virus. (The H5N1 used in the study was inactivated virus.).


Subject(s)
Antibodies, Immobilized , Biosensing Techniques/methods , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals , Birds , Electric Impedance , Erythrocytes , Humans , Influenza in Birds/diagnosis , Influenza, Human/diagnosis , Microelectrodes , Orthomyxoviridae Infections/diagnosis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...