Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36234517

ABSTRACT

Electrochemical reduction of carbon dioxide (CO2RR) to crystalline solid carbon at room temperature is challenging, but it is a providential CO2 utilization route due to its indefinite storage and potential applications of its products in many advanced technologies. Here, room-temperature synthesis of polycrystalline nanographene was achieved by CO2RR over the electrodeposited Bi on Sn substrate prepared with various bismuth concentrations (0.01 M, 0.05 M, and 0.1 M). The solid carbon products were solely produced on all the prepared electrodes at the applied potential -1.1 V vs. Ag/AgCl and were characterized as polycrystalline nanographene with an average domain size of ca. 3-4 nm. The morphology of the electrodeposited Bi/Sn electrocatalysts did not have much effect on the final structure of the solid carbon products formed but rather affected the CO2 electroreduction activity. The optimized negative potential for the formation of nanographene products on the 0.05Bi/Sn was ca. -1.5 V vs. Ag/AgCl. Increasing the negative value of the applied potential accelerated the agglomeration of the highly reactive nascent Bi clusters in situ formed under the reaction conditions, which, as a consequence, resulted in a slight deviation of the product selectivity toward gaseous CO and H2 evolution reaction. The Bi-graphene composites produced by this method show high potential as an additive for working electrode modification in electrochemical sensor-related applications.

2.
J Nanosci Nanotechnol ; 10(11): 7154-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21137886

ABSTRACT

Nearly lattice-matched In(0.528)Ga(0.472)P(1-y)Ny bulk layer and In(0.528)Ga(0.472)P(1-y)Ny/GaAs and GaAs/ In(0.528)Ga(0.472)P(1-y)Ny quantum wells with higher N content, y = 0.027, were grown on GaAs(001) substrates by metalorganic vapor phase epitaxy. High-resolution X-ray diffraction results demonstrated the high quality of both the layer and quantum wells with fairly flat interfaces. Temperature dependent photoluminescence results showed that a near-band-edge emission is dominant in the bulk In(0.528)Ga(0.472)P(0.973)N(0.027) layer, which at low temperature (T < 100 K) is associated with localized emissions centered at approximately 1.73 eV. Bandgap of In(0.528)Ga(0.472)P(0.973)N(0.027) was examined to be 1.81 and 1.78 eV at 10 K and room-temperature, respectively. Low temperature (10 K)-photoluminescence spectrum obtained from the GaAs/InxGa(1-x)P(1-y)Ny quantum well also exhibited red emission at 1.73 eV attributed to the emission from the InGaPN barrier. In addition, there are the extra weak peaks appear in a near-infrared energy range at 1.357 and 1.351 eV for InxGa(1-x)P(1-y)Ny/GaAs and GaAs/InxGa(1-x)P(1-y)Ny quantum wells, respectively. Such optical transitions are considered as an indirect transition between electrons located in the InGaPN and holes located in the GaAs regions. This situation suggested that both the In(0.528)Ga(0.472)P(0.973)N(0.027)/GaAs and GaAs/In(0.528)Ga(0.472)P(0.973)N(0.027) quantum wells exhibits a type-II quantum structure. This interpretation is justified when the valence and conduction band offsets of the type-II band alignment, which are relatively approximated to be 450 and 160 meV, are properly taken into account.

SELECTION OF CITATIONS
SEARCH DETAIL
...