Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124258, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38599025

ABSTRACT

This research transformed MTX into smart nanoparticles that respond to the acidic conditions present in inflammation. These nanoparticles were then incorporated into a patch that dissolves over time, aiding their penetration. A method using UV-Vis spectrophotometry was validated to support the development of this new delivery system. This method was used to measure the quantity of MTX in the prepared patches in various scenarios: in laboratory solutions with pH 7.4 and pH 5.0, in skin tissue, and plasma. This validation was conducted in laboratory studies, tissue samples, and live subjects, adhering to established guidelines. The resulting calibration curve displayed a linear relationship (correlation coefficient 0.999) across these scenarios. The lowest quantity of MTX that could be accurately detected was 0.6 µg/mL in pH 7.4 solutions, 1.46 µg/mL in pH 5.0 solutions, 1.11 µg/mL in skin tissue, and 1.48 µg/mL in plasma. This validated method exhibited precision and accuracy and was not influenced by dilution effects. The method was effectively used to measure MTX levels in the developed patch in controlled lab settings and biological systems (in vitro, ex vivo, and in vivo). This showed consistent drug content in the patches, controlled release patterns over 24 h, and pharmacokinetic profiles spanning 48 h. However, additional analytical approaches were necessary for quantifying MTX in studies focused on the drug's effects on the body's functions.


Subject(s)
Colorimetry , Methotrexate , Nanoparticles , Skin , Spectrophotometry, Ultraviolet , Animals , Methotrexate/blood , Methotrexate/pharmacokinetics , Methotrexate/administration & dosage , Methotrexate/chemistry , Methotrexate/analysis , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Skin/metabolism , Skin/chemistry , Colorimetry/methods , Rats , Drug Liberation , Male , Humans , Reproducibility of Results , Transdermal Patch , Rats, Wistar
2.
AAPS PharmSciTech ; 25(4): 70, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538953

ABSTRACT

PURPOSE: Rheumatoid arthritis (RA) is a systemic autoimmune disease that attacks human joints. Methotrexate (MTX), as one the most effective medications to treat RA, has limitations when administered either orally or by injection. To overcome this limitation, we formulated MTX through a smart nanoparticle (SNP) combined with dissolving microarray patch (DMAP) to achieve selective-targeted delivery of RA. METHODS: SNP was made using the combination of polyethylene glycol (PEG) and polycaprolactone (PCL) polymers, while DMAP was made using the combination of hyaluronic acid and polyvinylpyrrolidone K-30. SNP-DMAP was then evaluated for its mechanical and chemical characteristics, ex vivo permeation test, in vivo pharmacokinetic study, hemolysis, and hen's egg test-chorioallantoic membrane (HET-CAM) test. RESULT: The results showed that the characteristics of the SNP-DMAP-MTX formulas meet the requirements for transdermal delivery, with the particle size of 189.09 ±12.30 nm and absorption efficiency of 65.40 ± 5.0%. The hemolysis and HET-CAM testing indicate that this formula was non-toxic and non-irritating. Ex vivo permeation shows a concentration of 51.50 ± 3.20 µg/mL of SNP-DMAP-MTX in PBS pH 5.0. The pharmacokinetic profile of SNP-DMAP-MTX showed selectivity and sustained release compared with oral and DMAP-MTX with values of t1/2 (4.88 ± 0 h), Tmax (8 ± 0 h), Cmax (0.50 ± 0.04 µg/mL), AUC (3.15 ± 0.54 µg/mL.h), and mean residence time (MRT) (9.13 ± 0 h). CONCLUSION: The developed SNP-DMAP-MTX has been proven to deliver MTX transdermal and selectively at the RA site, potentially avoiding conventional MTX side effects and enhancing the effectiveness of RA therapy.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Animals , Female , Humans , Methotrexate , Chickens , Hemolysis , Drug Carriers/therapeutic use , Arthritis, Rheumatoid/drug therapy , Hydrogen-Ion Concentration
3.
Colloids Surf B Biointerfaces ; 219: 112805, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36063720

ABSTRACT

Primaquine (PMQ) is an effective antimalaria drug with several limitations. We report the combinatorial approach of thermoresponsive hydrogels and Dermarollers® for transdermal delivery of PMQ to overcome these limitations. The hydrogels were prepared using Pluronic F127 (PF127) and F68 (PF68). Specifically, HPMC was added into the formulation to improve the bioadhesive properties. Numerous formulations were prepared, showing that formulation comprising 15 % PF127, 3 % PF68 and 0.4 % HPMC with 1 % PMQ was selected as the optimum formulation. The formulation showed the gelation temperature around 35 °C with bioadhesive strength of 26.43 ± 2.31 dyne.cm2. Importantly, the pH of the formulation was suitable for skin application with the percentage of PMQ recovery of 99.57 ± 3.23 %. Moreover, the hydrogels exhibited free-flow liquid at storage and room temperature and high viscosities in the skin temperature. In vitro release experiments showed that the release of PMQ was sustained for 24 h. Evaluated in extensive ex vivo studies, the treatment with Dermarollers® improved the skin permeation and retention of PMQ for 3 days. In combination with Dermarollers®, the ex vivo permeation of PMQ was sustained and the localization of PMQ in the skin was improved over 72 h.

4.
Int J Pharm ; 609: 121204, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34662646

ABSTRACT

Malaria caused by various types of Plasmodium has become a global health problem. One of the drugs used as the first line of malaria therapy is primaquine (PMQ). PMQ is generally administered through the oral route. However, the use of PMQ orally could potentially cause some side effects and undergo the first-pass metabolism in the liver, reducing its effectiveness. Therefore, it is necessary to develop another drug administration route to avoid this effect. In this study, for the first time, PMQ was formulated into a transdermal patch for transdermal delivery, combined with solid microneedles, Dermaroller®. Following several optimizations, HPMC and glycerin were used as the main polymer and plasticizer, respectively. Specifically, the concentration of PEG 400 as a permeation enhancer was also optimized. The transdermal patches were evaluated for weight uniformity, thickness, surface pH, folding endurance, moisture content, moisture absorption ability, bioadhesive evaluation, and drug content recovery. PMQ release and permeation were also investigated through in vitro and ex vivo tests on rats' skin tissue. Importantly, the safety of the transdermal patch was also evaluated through in vitro hemolytic and in vivo irritation tests which were confirmed by histopathological examinations. The results showed that all formulations showed desired physical and bioadhesive properties with a folding endurance of >300 folds. The results exhibited that 31.31 ± 5.25% and 22.55 ± 4.35% of primaquine were released from transdermal patches following the in vitro and the ex vivo permeation studies. Combined with Dermaroller®, the ex vivo permeation study showed an improved permeation profile with 45.89 ± 5.00% of primaquine permeated after 24 h with a zero-order kinetic during the first 8 h. Hemolysis percentage was found to be <5%, indicating the non-toxic of this approach. Finally, the histopathology study showed that there was no severe tissue damage following the administration of our approach. Further in vivo evaluations should be performed.


Subject(s)
Pharmaceutical Preparations , Transdermal Patch , Administration, Cutaneous , Animals , Pharmaceutical Preparations/metabolism , Primaquine/metabolism , Rats , Skin/metabolism , Skin Absorption
SELECTION OF CITATIONS
SEARCH DETAIL
...