Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Epidemiol Infect ; 148: e80, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32228726

ABSTRACT

Teenagers have a higher risk of invasive meningococcal disease (IMD) than the general population. This cross-sectional study aimed to characterise strains of Neisseria meningitidis circulating among Norwegian teenagers and to assess risk factors for meningococcal carriage. Oropharyngeal swabs were collected from secondary-school students in southeastern Norway in 2018-2019. Meningococcal isolates were characterised using whole genome sequencing. Risk factors for meningococcal carriage were assessed from questionnaire data. Samples were obtained from 2296 12-24-year-olds (majority 13-19-year-olds). N. meningitidis was identified in 167 (7.3%) individuals. The highest carriage rate was found among 18-year-olds (16.4%). Most carriage isolates were capsule null (40.1%) or genogroup Y (33.5%). Clonal complexes cc23 (35.9%) and cc198 (32.3%) dominated and 38.9% of carriage strains were similar to invasive strains currently causing IMD in Norway. Use of Swedish snus (smokeless tobacco) (OR 1.56, 95% CI 1.07-2.27), kissing >two persons/month (OR 2.76, 95% CI 1.49-5.10) and partying >10 times/3months (OR 3.50, 95% CI 1.45-8.48) were associated with carriage, while age, cigarette smoking, sharing of drinking bottles and meningococcal vaccination were not. The high meningococcal carriage rate among 18-year-olds is probably due to risk-related behaviour. Use of Swedish snus is possibly a new risk factor for meningococcal carriage. Almost 40% of circulating carriage strains have invasive potential.


Subject(s)
Carrier State/epidemiology , Meningococcal Infections/epidemiology , Neisseria meningitidis/isolation & purification , Adolescent , Carrier State/microbiology , Child , Cross-Sectional Studies , Female , Humans , Male , Meningococcal Infections/microbiology , Neisseria meningitidis/genetics , Norway/epidemiology , Phylogeny , Risk Factors , Young Adult
2.
Vaccine ; 32(49): 6631-8, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25305564

ABSTRACT

In the recent decade, epidemic meningitis in the African meningitis belt has mostly been caused by Neisseria meningitidis of serogroups A, W and X (MenA, MenW and MenX, respectively). There is at present no licensed vaccine available to prevent MenX meningococcal disease. To explore a trivalent MenAWX vaccine concept, we have studied the immunogenicity in mice of MenX outer membrane vesicles (X-OMV) or MenX polysaccharide (X-PS) when combined with a bivalent A-OMV and W-OMV (AW-OMV) vaccine previously shown to be highly immunogenic in mice. The vaccine antigens were produced from three representative wild type strains of MenA (ST-7), MenW (ST-11) and MenX (ST-751) isolated from patients in the African meningitis belt. Groups of mice were immunized with two doses of X-OMV or X-PS combined with the AW-OMV vaccine or as individual components. All vaccine preparations were adsorbed to Al(OH)3. Sera from immunized mice were tested by ELISA and immunoblotting. Functional antibody responses were measured as serum bactericidal activity (SBA) and opsonophagocytic activity (OPA). Immunization of mice with X-OMV, alone or in combination with AW-OMV induced high levels of anti-X OMV IgG. Moreover, X-OMV alone or in combination with the AW-OMV vaccine induced high SBA and OPA titers against the MenX target strain. X-PS alone was not immunogenic in mice; however, addition of the AW-OMV vaccine to X-PS increased the immunogenicity of X-PS. Both AWX vaccine formulations induced high levels of IgG against A- and W-OMV and high SBA titers against the MenA and MenW vaccine strains. These results suggest that a trivalent AWX vaccine, either as a combination of OMV or OMV with X-PS, could potentially prevent the majority of meningococcal disease in the meningitis belt.


Subject(s)
Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/prevention & control , Meningococcal Vaccines/immunology , Meningococcal Vaccines/isolation & purification , Neisseria meningitidis/immunology , Serogroup , Adjuvants, Immunologic/administration & dosage , Africa , Alum Compounds/administration & dosage , Animals , Antibodies, Bacterial/blood , Blood Bactericidal Activity , Cell-Derived Microparticles/immunology , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Female , Immunoblotting , Meningitis, Meningococcal/epidemiology , Mice , Neisseria meningitidis/isolation & purification , Opsonin Proteins/blood , Phagocytosis , Polysaccharides, Bacterial/immunology , Vaccines, Combined/immunology , Vaccines, Combined/isolation & purification
3.
Scand J Immunol ; 79(4): 267-75, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24383864

ABSTRACT

Meningococcal meningitis is a significant global health challenge, especially for sub-Saharan area: the African meningitis belt. Neisseria meningitidis of serogroup A (MenA) is responsible for the large number of epidemics that have been recorded in these countries. To determine the level of antibodies against meningococcal A polysaccharide (APS) that correlates with protection against MenA disease in the African meningitis belt, it may be important to consider antibody avidity along with quantity. In this study, two ELISA methods using the chaotropic agent ammonium thiocyanate were compared and employed to measure avidity indexes (AI) of IgG antibodies against APS in controls and in acute and convalescent sera from Ethiopian meningococcal patients. High statistical correlations between the AIs determined by the two methods were observed. The geometric mean AI (GMAI) increased with time from acute to convalescent sera indicating affinity maturation. GMAI was significantly higher in convalescent sera from the MenA patients and in sera from the controls than in acute sera from patients with meningococcal disease. A significant correlation between serum bactericidal activity titres (SBA) and concentration of IgG antibodies against APS was observed; however, our results did not indicate that determination of antibody avidities by the thiocyanate elution method gave a better correlation with SBA than anti-APS IgG concentrations determined by the standard ELISA method.


Subject(s)
Antibodies, Bacterial/immunology , Antibody Affinity , Blood Bactericidal Activity/immunology , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin G/immunology , Meningitis, Meningococcal/immunology , Adolescent , Adult , Aged , Antibodies, Bacterial/blood , Child , Child, Preschool , Ethiopia , Humans , Immunoglobulin G/blood , Infant , Meningitis, Meningococcal/blood , Polysaccharides, Bacterial/immunology , Reproducibility of Results , Thiocyanates/metabolism , Young Adult
4.
Vaccine ; 31(51): 6097-106, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24120679

ABSTRACT

Meningococci of serogroups A and W (MenA and MenW) are the main causes of epidemic bacterial meningitis outbreaks in sub-Saharan Africa. In this study we prepared a detergent extracted outer membrane vesicle (dOMV) vaccine from representative African MenA and MenW strains, and compared the immunogenicity of this vaccine with existing meningococcal conjugate and polysaccharide (PS) vaccines in mice. NMRI mice were immunized with preclinical batches of the A+W dOMV vaccine, or with commercially available vaccines; a MenA conjugate vaccine (MenAfriVac(®), Serum Institute of India), ACYW conjugate vaccine (Menveo(®), Novartis) or ACYW PS vaccine (Mencevax(®), GlaxoSmithKline). The mice received 2 doses of 1/10 or 1/50 of a human dose with a three week interval. Immune responses were tested in ELISA, serum bactericidal activity (SBA) and opsonophagocytic activity (OPA) assays. High levels of IgG antibodies against both A and W dOMV were detected in mice receiving the A+W dOMV vaccine. High SBA titers against both MenA and MenW vaccine strains were detected after only one dose of the A+W dOMV vaccine, and the titers were further increased after the second dose. The SBA and OPA titers in mice immunized with dOMV vaccine were significantly higher than in mice immunized with the ACYW-conjugate vaccine or the PS vaccine. Furthermore, the A+W dOMV vaccine was shown to induce SBA and OPA titers against MenA of the same magnitude as the titers induced by the A-conjugate vaccine. In conclusion, the A+W dOMV vaccine induced high levels of functional antibodies to both MenA and MenW strains, levels that were shown to be higher or equal to the levels induced by licensed meningococcal vaccines. Thus, an A+W dOMV vaccine could potentially serve as an alternative or a supplement to existing conjugate and PS vaccines in the African meningitis belt.


Subject(s)
Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/immunology , Neisseria meningitidis, Serogroup A/immunology , Neisseria meningitidis, Serogroup W-135/immunology , Animals , Antibodies, Bacterial/blood , Drug Evaluation, Preclinical , Female , Immunization/methods , Immunoglobulin G/blood , Meningococcal Infections/immunology , Meningococcal Infections/microbiology , Mice , Mice, Inbred BALB C , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/immunology
5.
Scand J Immunol ; 76(2): 99-107, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22537024

ABSTRACT

The bacterium Neisseria meningitidis of serogroups A and W-135 has in the recent decade caused most of the cases of meningococcal meningitis in the African meningitis belt, and there is currently no efficient and affordable vaccine available demonstrated to protect against both these serogroups. Previously, deoxycholate-extracted outer membrane vesicle (OMV) vaccines against serogroup B meningococci have been shown to be safe and induce protection in humans in clonal outbreaks. The serogroup A and W-135 strains isolated from meningitis belt epidemics demonstrate strikingly limited variation in major surface-exposed protein structures. We have here investigated whether the OMV vaccine strategy also can be applied to prevent both serogroups A and W-135 meningococcal disease. A novel vaccine combining OMV extracted from recent African serogroup A and W-135 strains and adsorbed to aluminium hydroxide was developed and its antigenic characteristics and immunogenicity were studied in mice. The specificity of the antibody responses was analysed by immunoblotting and serum bactericidal activity (SBA) assays. Moreover, the bivalent A+W-135 vaccine was compared with monovalent A and W-135 OMV vaccines. The bivalent OMV vaccine was able to induce similar SBA titres as the monovalent A or W-135 OMV towards both serogroups. High SBA titres were also observed against a meningococcal serogroup C strain. These results show that subcapsular antigens may be of importance when developing broadly protective and affordable vaccines for the meningitis belt.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Meningitis, Meningococcal/immunology , Neisseria meningitidis, Serogroup A/immunology , Neisseria meningitidis, Serogroup W-135/immunology , Animals , Bacterial Vaccines/therapeutic use , Meningitis, Meningococcal/prevention & control , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...