Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050289

ABSTRACT

The Payne Effect (also known as the Fletcher-Gent Effect) has a fundamental impact on the behavior of filled rubber composites and therefore must be considered during their design. This study investigates the influence of carbon black (CB) surface area and structure on the observed Payne Effect and builds on the existing models of Kraus and Ulmer to explain this phenomenon. Dynamic strain sweeps were carried out on natural rubber (NR) compounds containing eight different grades of CB at equivalent volume fractions. The loss and storage moduli were modeled according to the Kraus and Ulmer equations, using a curve optimization tool in SciPy. Subsequent regression analysis provided strong correlations between the fitting parameters and the CB structure and surface area. Using this regression analysis, this work provides further insight into the physical meaning behind the Kraus and Ulmer models, which are phenomenological in nature.

2.
Polymers (Basel) ; 15(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050420

ABSTRACT

Filler reinforced rubber is widely used for engineering applications; therefore, a sound characterization of the effects of physical aging is crucial for accurately predicting its viscoelastic properties within its operational temperature range. Here, the torsion pendulum is used to monitor the evolution of the storage and loss modulus of carbon black filled samples for four days after a temperature drop to 30 °C. The storage modulus presents a continuous increase, while the loss modulus generally displays a steady decrease throughout the four days that each test was conducted. The relationship of the recovery rates with the carbon black properties is also studied, analysing its dependency on the particle size and aggregate structure. The evolution of the recovery rate seems to depend linearly on the surface area while the carbon black structure appears to have a much weaker influence on the physical aging behavior for the set of compounds tested. The obtained results corroborate the presence of physical aging at room temperature for filler rubber materials and the ability of the torsion pendulum to monitor the storage and loss modulus change, providing pivotal data on the influence of physical aging on the viscoelastic properties of the material.

3.
Polymers (Basel) ; 14(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35335525

ABSTRACT

The influence of carbon black (CB) structure and surface area on key rubber properties such as monotonic stress-strain, cyclic stress-strain, and dynamic mechanical behaviors are investigated in this paper. Natural rubber compounds containing eight different CBs were examined at equivalent particulate volume fractions. The CBs varied in their surface area and structure properties according to a wide experimental design space, allowing robust correlations to the experimental data sets to be extracted. Carbon black structure plays a dominant role in defining the monotonic stress-strain properties (e.g., secant moduli) of the compounds. In line with the previous literature, this is primarily due to strain amplification and occluded rubber mechanisms. For cyclic stress-strain properties, which include the Mullins effect and cyclic softening, the observed mechanical hysteresis is strongly correlated with carbon black structure, which implies that hysteretic energy dissipation at medium to large strain values is isolated in the rubber matrix and arises due to matrix overstrain effects. Under small to medium dynamic strain conditions, classical strain dependence of viscoelastic moduli is observed (the Payne effect), the magnitude of which varies dramatically and systematically depending on the colloidal properties of the CB. At low strain amplitudes, both CB structure and surface area are positively correlated to the complex moduli. Beyond ~2% strain amplitude the effect of surface area vanishes, while structure plays an increasing and eventually dominant role in defining the complex modulus. This transition in colloidal correlations reflects the transition in stiffening mechanisms from flexing of rigid percolated particle networks at low strains to strain amplification at medium to high strains. By rescaling the dynamic mechanical data sets to peak dynamic stress and peak strain energy density, the influence of CB colloidal properties on compound hysteresis under strain, stress, and strain energy density control can be estimated. This has considerable significance for materials selection in rubber product development.

4.
Polymers (Basel) ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941088

ABSTRACT

Undispersed filler agglomerates or other substantial inclusions/contaminants in rubber can act as large crack precursors that reduce the strength and fatigue lifetime of the material. To demonstrate this, we use tensile strength (stress at break, σb) data from 50 specimens to characterize the failure distribution behavior of carbon black (CB) reinforced styrene-butadiene rubber (SBR) compounds. Poor mixing was simulated by adding a portion of the CB late in the mixing process, and glass beads (microspheres) with 517 µm average diameter were introduced during milling to reproduce the effects of large inclusions. The σb distribution was well described with a simple unimodal Weibull distribution for the control compound, but the tensile strengths of the poor CB dispersion material and the compounds with the glass beads required bimodal Weibull distributions. For the material with the lowest level of glass beads-corresponding to less than one microsphere per test specimen-the bimodal failure distribution spanned a very large range of σb from 13.7 to 22.7 MPa in contrast to the relatively narrow σb distribution for the control from 18.4 to 23.8 MPa. Crack precursor size (c0) distributions were also inferred from the data, and the glass beads introduced c0 values in the 400 µm range compared to about 180 µm for the control. In contrast to σb, critical tearing energy (tear strength) was unaffected by the presence of the CB agglomerates and glass beads, because the strain energy focuses on the pre-cut macroscopic crack in the sample during tear testing rather than on the microscopic crack precursors within the rubber. The glass beads were not detected by conventional filler dispersion measurements using interferometric microscopy, indicating that tensile strength distribution characterization is an important complementary approach for identifying the presence of minor amounts of large inclusions in rubber.

SELECTION OF CITATIONS
SEARCH DETAIL
...