Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 384: 121442, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31668760

ABSTRACT

Recycling of steel making dusts often targets Zn removal. Other heavy metals such as Mo, W or Cr do not receive as much attention, and the decontamination of the dusts from these constituents is scarcely addressed in the literature. This study presents a novel approach of the selective separation of Mo from steel making dusts using alkaline solutions with low concentrations, before Zn removal using concentrated alkaline medium. Such an approach has never been reported before and can contribute to more efficient decontamination of the steel making dusts and will increase the value of recovered components since Mo can be significantly preconcentrated. Two samples originating from two steel producers were investigated. One sample contained 2.65% of Mo and 1.87% of Zn, and the second sample had 0.61% of Mo and 35.9% of Zn. Temperature was found to have a low impact on the leaching efficiency of Mo, while increased NaOH concentration promoted leaching of Zn. Excellent pre-concentration of Mo was achieved by using a S:L ratio of 1:3. Almost 5170 mg/L Mo, 1000 mg/L W, no Fe and only 2 mg/L Zn were present in the solution after leaching at 30 °C for 30 min. For the samples containing lower concentrations of Mo and high concentrations of Zn, the selectivity of the process was affected when using higher concentrations of NaOH. A final leachate containing 797 mg/L of Mo and only 11 mg/L Zn was obtained after leaching with 0.05 M NaOH. DFT computations showed that the 2D layered structures of MoO3 and WO3 are decisive factors that account for their high solubilites.

2.
Waste Manag ; 83: 194-201, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30514466

ABSTRACT

Cobalt is considered to be a critical raw material for the European Union. Since it has limited supply, substantial efforts should be made to develop sustainable methods to recover cobalt from alternative sources. Hydrometallurgical processing of spent NiMH batteries generates a concentrated stream containing, preferably, Co (11.8 g/L) and impurities (2.3 g/L Ni, 0.2 g/L Al, 9.3 g/L Mn and 4.6 g/L rare earth elements) in the nitric acid media. In this study, the selective separation of Co from the other ions present was investigated. Co was selectively separated from Al, Mn and REEs using 1 M Cyanex 301 in kerosene. The different kinetic behaviour during extraction with Cyanex 301 was utilized to separate Co and Ni ions selectively. The calculated ΔH for the Co extraction process equals - 11.37 ±â€¯0.5 kJ/mol, which indicates that the extraction of Co in the system tested is an exothermic reaction. The effect of temperature on the Co extraction was used to obtain better selectivity towards Ni. Co was recovered by selective stripping with 4 M HCl at ambient temperature. The final purity of the stripping product was 99.9%.


Subject(s)
Cobalt , Rivers , Electric Power Supplies , Ions
3.
Nat Commun ; 9(1): 4876, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451827

ABSTRACT

Retrieval of mercury from aqueous streams has significant environmental and societal importance due to its very high toxicity and mobility. We present here a method to retrieve mercury from aqueous feeds via electrochemical alloy formation on thin platinum films. This application is a green and effective alternative to traditional chemical decontamination techniques. Under applied potential, mercury ions in solution form a stable PtHg4 alloy with platinum on the cathode. A 100 nanometres platinum film was fully converted to a 750 nanometres thick layer of PtHg4. The overall removal capacity is very high, > 88 g mercury per cm3. The electrodes can easily be regenerated after use. Efficient and selective decontamination is possible in a wide pH range, allowing processing of industrial, municipal, and natural waters. The method is suited for both high and low concentrations of mercury and can reduce mercury levels far below the limits allowed in drinking water.

4.
Waste Manag ; 36: 289-96, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25443097

ABSTRACT

With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively.


Subject(s)
Decontamination/methods , Electronic Waste/analysis , Hazardous Waste/analysis , Household Articles , Mercury/analysis , Potassium Iodide/chemistry , Iodine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...