Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
EBioMedicine ; 104: 105176, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38810560

ABSTRACT

BACKGROUND: Natural killer (NK) cells are important innate immunity players and have unique abilities to recognize and eliminate cancer cells, particularly in settings of antibody-opsonization and antibody-dependant cellular cytotoxicity (ADCC). However, NK cell-based responses in bladder cancers to therapeutic antibodies are typically immunosuppressed, and these immunosuppressive mechanisms are largely unknown. METHODS: Single cell RNA sequencing (scRNA-seq) and high-dimensional flow cytometry were used to investigate the phenotype of tumour-infiltrating NK cells in patients with bladder cancer. Further, in vitro, and in vivo models of this disease were used to validate these findings. FINDINGS: NK cells within bladder tumours displayed reduced expression of FcγRIIIa/CD16, the critical Fc receptor involved in ADCC-mediated cytotoxicity, on both transcriptional and protein levels. Transcriptional signatures of transforming growth factor (TGF)-ß-signalling, a pleiotropic cytokine known for its immunosuppressive and tissue residency-inducing effects, were upregulated in tumour-infiltrating NK cells. TGF-ß mediated CD16 downregulation on NK cells, was further validated in vitro, which was accompanied by a transition into a tissue residency phenotype. This CD16 downregulation was also abrogated by TGF-ßR signalling inhibition, which could also restore the ADCC ability of NK cells subject to TGF-ß effects. In a humanized mouse model of bladder cancer, mice treated with a TGF-ß inhibitor exhibited increased ADCC activity compared to mice treated only with antibodies. INTERPRETATION: This study highlights how TGF-ß-rich bladder cancers inhibit NK cell-mediated ADCC by downregulating CD16. TGF-ß inhibition represents new avenues to reverse immunosuppression and enhance the tumoricidal capacity of NK cells in bladder cancer. FUNDING: The Guimaraes Laboratory is funded by a US Department of Defense-Breast Cancer Research Program-Breakthrough Award Level 1 (#BC200025), a grant (#2019485) awarded through the Medical Research Future Fund (MRFF, with the support of the Queensland Children's Hospital Foundation, Microba Life Sciences, Richie's Rainbow Foundation, Translational Research Institute (TRI) and UQ), and a grant (#RSS_2023_085) funded by a Metro South Health Research Support Scheme. J.K.M.W. is funded by a UQ Research Training Program PhD Scholarship and N.O. is funded by a NHMRC Postgraduate Scholarship (#2021932).

2.
Nat Methods ; 21(5): 777-792, 2024 May.
Article in English | MEDLINE | ID: mdl-38637691

ABSTRACT

Single-cell T cell and B cell antigen receptor-sequencing data analysis can potentially perform in-depth assessments of adaptive immune cells that inform on understanding immune cell development to tracking clonal expansion in disease and therapy. However, it has been extremely challenging to analyze and interpret T cells and B cells and their adaptive immune receptor repertoires at the single-cell level due to not only the complexity of the data but also the underlying biology. In this Review, we delve into the computational breakthroughs that have transformed the analysis of single-cell T cell and B cell antigen receptor-sequencing data.


Subject(s)
B-Lymphocytes , Receptors, Antigen, B-Cell , Receptors, Antigen, T-Cell , Single-Cell Analysis , T-Lymphocytes , Single-Cell Analysis/methods , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Animals , Computational Biology/methods
3.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
4.
bioRxiv ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38370662

ABSTRACT

Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.

5.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37055623

ABSTRACT

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Subject(s)
Taraxacum , Humans , T-Lymphocytes , Single-Cell Analysis
6.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100545

ABSTRACT

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Subject(s)
Immunity, Innate , Lung , Humans , Cell Differentiation , Killer Cells, Natural , Epithelial Cells
7.
Cell Rep ; 42(8): 112991, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590132

ABSTRACT

Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here, we show that individuals 70 years or older (median age 73, range 70-75) who received a primary two-dose schedule with AZD1222 and booster third dose with mRNA vaccine achieve significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared with those younger than 70 (median age 66, range 54-69) at 1 month post booster. Impaired neutralization potency and breadth post third dose in the elderly is associated with circulating "atypical" spike-specific B cells expressing CD11c and FCRL5. However, when considering individuals who received three doses of mRNA vaccine, we did not observe differences in neutralization or enrichment in atypical B cells. This work highlights the finding that AdV and mRNA COVID-19 vaccine formats differentially instruct the memory B cell response.


Subject(s)
COVID-19 , Aged , Humans , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
8.
Bone Res ; 11(1): 34, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37385982

ABSTRACT

Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/ß-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.

9.
Nat Commun ; 14(1): 2071, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045832

ABSTRACT

Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.


Subject(s)
Interleukin-10 , Interleukin-2 , Humans , Interleukin-2/adverse effects , Interleukin-10/metabolism , B-Lymphocytes , Plasma Cells , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
10.
Sci Immunol ; 8(80): eadd1728, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36800411

ABSTRACT

In antibody responses, mutated germinal center B (BGC) cells are positively selected for reentry or differentiation. As the products from GCs, memory B cells and antibody-secreting cells (ASCs) support high-affinity and long-lasting immunity. Positive selection of BGC cells is controlled by signals received through the B cell receptor (BCR) and follicular helper T (TFH) cell-derived signals, in particular costimulation through CD40. Here, we demonstrate that the TFH cell effector cytokine interleukin-21 (IL-21) joins BCR and CD40 in supporting BGC selection and reveal that strong IL-21 signaling prioritizes ASC differentiation in vivo. BGC cells, compared with non-BGC cells, show significantly reduced IL-21 binding and attenuated signaling, which is mediated by low cellular heparan sulfate (HS) sulfation. Mechanistically, N-deacetylase and N-sulfotransferase 1 (Ndst1)-mediated N-sulfation of HS in B cells promotes IL-21 binding and signal strength. Ndst1 is down-regulated in BGC cells and up-regulated in ASC precursors, suggesting selective desensitization to IL-21 in BGC cells. Thus, specialized biochemical regulation of IL-21 bioavailability and signal strength sets a balance between the stringency and efficiency of GC selection.


Subject(s)
Germinal Center , T-Lymphocytes, Helper-Inducer , Biological Availability , Cell Differentiation , Receptors, Antigen, B-Cell/metabolism , CD40 Antigens
11.
Cell ; 185(25): 4841-4860.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493756

ABSTRACT

We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.


Subject(s)
Fetus , Lung , Humans , Cell Differentiation , Gene Expression Profiling , Lung/cytology , Organogenesis , Organoids , Atlases as Topic , Fetus/cytology
12.
iScience ; 25(7): 104660, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35845169

ABSTRACT

Bladder infection affects a hundred million people annually, but our understanding of bladder immunity is incomplete. We found type 17 immune response genes among the most up-regulated networks in mouse bladder following uropathogenic Escherichia coli (UPEC) challenge. Intravital imaging revealed submucosal Rorc+ cells responsive to UPEC challenge, and we found increased Il17 and IL22 transcripts in wild-type and Rag2 -/- mice, implicating group 3 innate lymphoid cells (ILC3s) as a source of these cytokines. NCR-positive and negative ILC3 subsets were identified in murine and human bladders, with local proliferation increasing IL17-producing ILC3s post infection. ILC3s made a more limited contribution to bladder IL22, with prominent early induction of IL22 evident in Th17 cells. Single-cell RNA sequencing revealed bladder NCR-negative ILC3s as the source of IL17 and identified putative ILC3-myeloid cell interactions, including via lymphotoxin-ß-LTBR. Altogether, our data provide important insights into the orchestration and execution of type 17 immunity in bladder defense.

13.
Science ; 376(6597): eabo0510, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35549310

ABSTRACT

Single-cell genomics studies have decoded the immune cell composition of several human prenatal organs but were limited in describing the developing immune system as a distributed network across tissues. We profiled nine prenatal tissues combining single-cell RNA sequencing, antigen-receptor sequencing, and spatial transcriptomics to reconstruct the developing human immune system. This revealed the late acquisition of immune-effector functions by myeloid and lymphoid cell subsets and the maturation of monocytes and T cells before peripheral tissue seeding. Moreover, we uncovered system-wide blood and immune cell development beyond primary hematopoietic organs, characterized human prenatal B1 cells, and shed light on the origin of unconventional T cells. Our atlas provides both valuable data resources and biological insights that will facilitate cell engineering, regenerative medicine, and disease understanding.


Subject(s)
Immune System , Lymphocytes , Monocytes , Genomics , Humans , Immune System/embryology , Lymphocytes/metabolism , Monocytes/metabolism , Organ Specificity , RNA-Seq , Single-Cell Analysis
14.
EBioMedicine ; 77: 103878, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35189575

ABSTRACT

BACKGROUND: Prominent early features of COVID-19 include severe, often clinically silent, hypoxia and a pronounced reduction in B cells, the latter important in defence against SARS-CoV-2. This presentation resembles the phenotype of mice with VHL-deficient B cells, in which Hypoxia-Inducible Factors are constitutively active, suggesting hypoxia might drive B cell abnormalities in COVID-19. METHODS: Detailed B cell phenotyping was undertaken by flow-cytometry on longitudinal samples from patients with COVID-19 across a range of severities (NIHR Cambridge BioResource). The impact of hypoxia on the transcriptome was assessed by single-cell and whole blood RNA sequencing analysis. The direct effect of hypoxia on B cells was determined through immunisation studies in genetically modified and hypoxia-exposed mice. FINDINGS: We demonstrate the breadth of early and persistent defects in B cell subsets in moderate/severe COVID-19, including reduced marginal zone-like, memory and transitional B cells, changes also observed in B cell VHL-deficient mice. These findings were associated with hypoxia-related transcriptional changes in COVID-19 patient B cells, and similar B cell abnormalities were seen in mice kept in hypoxic conditions. INTERPRETATION: Hypoxia may contribute to the pronounced and persistent B cell pathology observed in acute COVID-19 pneumonia. Assessment of the impact of early oxygen therapy on these immune defects should be considered, as their correction could contribute to improved outcomes. FUNDING: Evelyn Trust, Addenbrooke's Charitable Trust, UKRI/NIHR, Wellcome Trust.


Subject(s)
COVID-19 , Pneumonia , Animals , Humans , Hypoxia , Mice , Oxygen , SARS-CoV-2
15.
Immunol Rev ; 305(1): 111-136, 2022 01.
Article in English | MEDLINE | ID: mdl-34821397

ABSTRACT

There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.


Subject(s)
Cues , Epigenesis, Genetic , Animals , DNA Methylation , Homeostasis , Humans , Immunity, Innate , Mammals , T-Lymphocytes
16.
NEJM Evid ; 1(1): EVIDoa2100009, 2022 01.
Article in English | MEDLINE | ID: mdl-38319239

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease of the artery wall. Regulatory T cells (Tregs) limit inflammation and promote tissue healing. Low doses of interleukin (IL)-2 have the potential to increase Tregs, but its use is contraindicated for patients with ischemic heart disease. METHODS: In this randomized, double-blind, placebo-controlled, dose-escalation trial, we tested low-dose subcutaneous aldesleukin (recombinant IL-2), given once daily for 5 consecutive days. In study part A, the primary end point was safety, and patients with stable ischemic heart disease were randomly assigned to receive placebo or to one of five dose groups (range, 0.3 to 3.0 × 106 IU daily). In study part B, patients with acute non-ST elevation myocardial infarction or unstable angina were randomly assigned to receive placebo or to one of two dose groups (1.5 and 2.5 × 106 IU daily). The coprimary end points were safety and the dose required to increase circulating Tregs by 75%. Single-cell RNA-sequencing of circulating immune cells was used to provide a mechanistic assessment of the effects of aldesleukin. RESULTS: Forty-four patients were randomly assigned to either study part A (n=26) or part B (n=18). In total, 3 patients withdrew before dosing, 27 received active treatment, and 14 received placebo. The majority of adverse events were mild. Two serious adverse events occurred, with one occurring after drug administration. In parts A and B, there was a dose-dependent increase in Tregs. In part B, the estimated dose to achieve a 75% increase in Tregs was 1.46 × 106 IU (95% confidence interval, 1.06 to 1.87). Single-cell RNA-sequencing demonstrated the engagement of distinct pathways and cell­cell interactions. CONCLUSIONS: In this phase 1b/2a study, low-dose IL-2 expanded Tregs without adverse events of major concern. Larger trials are needed to confirm the safety and to further evaluate the efficacy of low-dose IL-2 as an anti-inflammatory therapy for patients with ischemic heart disease. (Funded by the Medical Research Council, the British Heart Foundation, and others; ClinicalTrials.gov number, NCT03113773)


Subject(s)
Interleukin-2 , Interleukin-2/analogs & derivatives , Myocardial Ischemia , T-Lymphocytes, Regulatory , Humans , Interleukin-2/administration & dosage , Interleukin-2/therapeutic use , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Myocardial Ischemia/immunology , Myocardial Ischemia/drug therapy , Double-Blind Method , Male , Middle Aged , Female , Recombinant Proteins
17.
Cell Rep ; 37(12): 110132, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936871

ABSTRACT

The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.


Subject(s)
Epithelial Cells/metabolism , Macrophages/metabolism , Prostate/immunology , Prostate/metabolism , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Transcriptome , Aged , Animals , Epithelial Cells/immunology , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Humans , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA-Seq , Receptors, Androgen/metabolism , Single-Cell Analysis/methods , Zinc/metabolism
18.
Brain Behav Immun ; 97: 226-238, 2021 10.
Article in English | MEDLINE | ID: mdl-34371135

ABSTRACT

There is increasing interest in how immune cells, including those within the meninges at the blood-brain interface, influence brain function and mood disorders, but little data on humoral immunity in this context. Here, we show that in mice exposed to psychosocial stress, there is increased splenic B cell activation and secretion of the immunoregulatory cytokine interleukin (IL)-10. Meningeal B cells were prevalent in homeostasis but substantially decreased following stress, whereas Ly6Chi monocytes increased, and meningeal myeloid cells showed augmented expression of activation markers. Single-cell RNA sequencing of meningeal B cells demonstrated the induction of innate immune transcriptional programmes following stress, including genes encoding antimicrobial peptides that are known to alter myeloid cell activation. Cd19-/- mice, that have reduced B cells, showed baseline meningeal myeloid cell activation and decreased exploratory behaviour. Together, these data suggest that B cells may influence behaviour by regulating meningeal myeloid cell activation.


Subject(s)
B-Lymphocytes , Meninges , Animals , Antigen Presentation , Mice , Mice, Inbred C57BL , Myeloid Cells , Stress, Psychological
19.
Nat Med ; 27(5): 904-916, 2021 05.
Article in English | MEDLINE | ID: mdl-33879890

ABSTRACT

Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


Subject(s)
COVID-19/immunology , Proteome , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Transcriptome , Cross-Sectional Studies , Humans , Monocytes/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
20.
Immunohorizons ; 5(2): 102-116, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619159

ABSTRACT

Regulatory T cells (Tregs) are recruited to nonlymphoid tissues in chronic disease, including cancer, and the tissue environment is held to shape the Treg phenotype diversity. Using single-cell RNA sequencing, we examined the transcriptomic and TCR profile of Tregs recruited to hyperproliferative HPV16 E7-expressing transgenic and control nontransgenic murine skin grafts. Tregs were more abundant in E7 transgenic skin grafts than control grafts, without evidence of E7 specificity. E7 transgenic grafts attracted both Klrg1 + Tregs and Il1r2 + Tregs, which were phenotypically distinct but shared a core gene signature with previously described tumor-infiltrating Tregs. Pseudotime trajectory analysis of Tregs of defined TCR clonotypes predicted phenotypic plasticity within the skin and between the skin and draining lymph nodes. Thus, oncogene-induced hyperproliferative skin expressing a single defined non-self-antigen can attract and induce non-Ag-specific Tregs that acquire distinct regulatory phenotypes characterized by specific effector gene signatures.


Subject(s)
Antigen Presentation/immunology , Human papillomavirus 16/immunology , Papillomavirus E7 Proteins/immunology , Skin/pathology , T-Lymphocytes, Regulatory/immunology , Animals , Female , Human papillomavirus 16/genetics , Lectins, C-Type/metabolism , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Receptors, Immunologic/metabolism , Skin/immunology , Skin Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...