Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Arch Toxicol ; 94(11): 3799-3817, 2020 11.
Article in English | MEDLINE | ID: mdl-32915249

ABSTRACT

Methyl mercury (MeHg) is an organic highly toxic compound that is transported efficiently via the human placenta. Our previous data suggest that MeHg is taken up into placental cells by amino acid transporters while mercury export from placental cells mainly involves ATP binding cassette (ABC) transporters. We hypothesized that the ABC transporter multidrug resistance-associated protein (MRP)1 (ABCC1) plays an essential role in mercury export from the human placenta. Transwell transport studies with MRP1-overexpressing Madin-Darby Canine Kidney (MDCK)II cells confirmed the function of MRP1 in polarized mercury efflux. Consistent with this, siRNA-mediated MRP1 gene knockdown in the human placental cell line HTR-8/SVneo resulted in intracellular mercury accumulation, which was associated with reduced cell viability, accompanied by increased cytotoxicity, apoptosis, and oxidative stress as determined via the glutathione (GSH) status. In addition, the many sources claiming different localization of MRP1 in the placenta required a re-evaluation of its localization in placental tissue sections by immunofluorescence microscopy using an MRP1-specific antibody that was validated in-house. Taken together, our results show that (1) MRP1 preferentially mediates apical-to-basolateral mercury transport in epithelial cells, (2) MRP1 regulates the GSH status of placental cells, (3) MRP1 function has a decisive influence on the viability of placental cells exposed to low MeHg concentrations, and (4) the in situ localization of MRP1 corresponds to mercury transport from maternal circulation to the placenta and fetus. We conclude that MRP1 protects placental cells from MeHg-induced oxidative stress by exporting the toxic metal and by maintaining the placental cells' GSH status in equilibrium.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Glutathione/metabolism , Methylmercury Compounds/metabolism , Multidrug Resistance-Associated Proteins/physiology , Oxidative Stress , Placenta/metabolism , Amino Acid Transport Systems/metabolism , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Cells, Cultured , Dogs , Endothelial Cells , Female , Gene Knockdown Techniques , Humans , Immunohistochemistry , Madin Darby Canine Kidney Cells , Methylmercury Compounds/adverse effects , Pregnancy
2.
Biomed Pharmacother ; 129: 110506, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32768979

ABSTRACT

Special attention is required when pharmacological treatment is indicated for a pregnant woman. P-glycoprotein (MDR1) is a well-known transporter localized in the maternal blood-facing apical membrane of placental syncytiotrophoblast and is considered to play an important role in protecting the developing fetus. Maraviroc, a MDR1 substrate that is registered for treatment of HIV infection, shows a low toxicity profile, suggesting favorable tolerability also if administered to pregnant women. Nevertheless, there is only poor understanding to date regarding the extent to which it permeates across the placental barrier and what are the transport mechanisms involved. Endeavoring to clarify the passage of maraviroc across placenta, we used in this study the method of closed-circuit perfusion of maraviroc across human placental cotyledon. The data obtained confirmed slight involvement of MDR1, but they also suggest possible interaction with other transport system(s) working in the opposite direction from that of MDR1. Complementary in vitro studies, including cellular experiments on choriocarcinoma BeWo cells as well as transporter-overexpressing MDCKII and A431 cell lines and accumulation in placental fresh villous fragments, revealed maraviroc transport by MRP1, OATP1A2, and OATP1B3 transporters. Based on mRNA expression data in the placental tissue, isolated trophoblasts, and fetal endothelial cells, especially MRP1 and OATP1A2 seem to play a crucial role in cooperatively driving maraviroc into placental tissue. By the example of maraviroc, we show here the important interplay of transporters in placental drug handling and its possibility to overcome the MDR1-mediated efflux.


Subject(s)
Anti-HIV Agents/metabolism , Maraviroc/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Organic Anion Transporters/metabolism , Placenta/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Acridines/pharmacology , Animals , Anti-HIV Agents/blood , Anti-HIV Agents/pharmacology , Cell Line, Tumor , Dogs , Drug Interactions , Female , Gene Expression Regulation , Humans , Madin Darby Canine Kidney Cells , Maraviroc/blood , Multidrug Resistance-Associated Proteins/genetics , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/genetics , Perfusion , Placenta/drug effects , Placental Circulation , Pregnancy , Ritonavir/pharmacology , Solute Carrier Organic Anion Transporter Family Member 1B3/antagonists & inhibitors , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Tetrahydroisoquinolines/pharmacology
3.
Drug Metab Dispos ; 47(9): 954-960, 2019 09.
Article in English | MEDLINE | ID: mdl-31266750

ABSTRACT

Maraviroc is a chemokine receptor 5 (CCR5) inhibitor used in the treatment of human immunodeficiency virus (HIV) that also shows therapeutic potential for several autoimmune, cancer, and inflammatory diseases that can afflict pregnant women. However, only limited information exists on the mechanisms underlying the transplacental transfer of the drug. We aimed to expand the current knowledge base on how maraviroc interacts with several placental ATP-binding cassette (ABC) efflux transporters that have a recognized role in the protection of a developing fetus: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance protein 2 (ABCC2). We found that maraviroc does not inhibit any of the three studied ABC transporters and that its permeability is not affected by ABCG2 or ABCC2. However, our in vitro results revealed that maraviroc shows affinity for human ABCB1 and the endogenous canine P-glycoprotein (Abcb1) expressed in Madin-Darby canine kidney II (MDCKII) cells. Perfusion of rat term placenta showed accelerated transport of maraviroc in the fetal-to-maternal direction, which suggests that ABCB1/Abcb1 facilitates in situ maraviroc transport. This transplacental transport was saturable and significantly diminished after the addition of the ABCB1/Abcb1 inhibitors elacridar, zosuquidar, and ritonavir. Our results indicate that neither ABCG2 nor ABCC2 influence maraviroc pharmacokinetic but that ABCB1/Abcb1 may be partly responsible for the decreased transplacental permeability of maraviroc to the fetus. The strong affinity of maraviroc to Abcb1 found in our animal models necessitates studies in human tissue so that maraviroc pharmacokinetics in pregnant women can be fully understood. SIGNIFICANCE STATEMENT: Antiretroviral drug maraviroc shows low toxicity and is thus a good candidate for prevention of mother-to-child transmission of human immunodeficiency virus when failure of recommended therapy occurs. Using in vitro cell-based experiments and in situ dually perfused rat term placenta, we examined maraviroc interaction with the placental ABC drug transporters ABCB1, ABCG2, and ABCC2. We demonstrate for the first time that placental ABCB1 significantly reduces mother-to-fetus transport of maraviroc, which suggests that ABCB1 may be responsible for the low cord-blood/maternal-blood ratio observed in humans.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , CCR5 Receptor Antagonists/pharmacokinetics , Maraviroc/pharmacokinetics , Maternal-Fetal Exchange , Multidrug Resistance-Associated Proteins/metabolism , Animals , CCR5 Receptor Antagonists/therapeutic use , Dogs , Female , Fetus/metabolism , HIV Infections/drug therapy , Humans , Madin Darby Canine Kidney Cells , Maraviroc/therapeutic use , Models, Animal , Multidrug Resistance-Associated Protein 2 , Permeability , Placenta/metabolism , Placental Circulation , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Rats
4.
Article in English | MEDLINE | ID: mdl-28696229

ABSTRACT

Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Dideoxynucleosides/metabolism , Drug Interactions/physiology , Intestinal Absorption/physiology , Membrane Transport Proteins/metabolism , Rilpivirine/metabolism , Animals , Biological Transport/physiology , Caco-2 Cells , Cell Line , Cell Line, Tumor , Dideoxynucleosides/pharmacology , Dogs , Humans , Lamivudine/metabolism , Lamivudine/pharmacology , Madin Darby Canine Kidney Cells , Male , Rats , Rats, Wistar , Reverse Transcriptase Inhibitors/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Rilpivirine/pharmacology
5.
Placenta ; 47: 124-129, 2016 11.
Article in English | MEDLINE | ID: mdl-27780535

ABSTRACT

INTRODUCTION: All HIV positive pregnant women should receive combination antiretroviral therapy (cART) to prevent mother-to-child transmission (MTCT) of the virus. It has recently been shown that fetal exposure of nucleoside reverse transcriptase inhibitors (NRTIs) tenofovir disoproxil fumarate (TDF) and abacavir is decreased by placental ABC transporters p-glycoprotein (ABCB1) and BCRP (ABCG2). The aim of this study was to evaluate transporter-mediated drug-drug interactions (DDI) between etravirine (TMC125), a novel non-nucleoside reverse transcriptase inhibitor used in cART, and the NRTIs and to assess the relevance of such DDI for transplacental pharmacokinetics of TDF and abacavir. METHODS: In vitro accumulation assays and transport experiments on ABCB1 and ABCG2 overexpressing MDCKII monolayers were employed. Furthermore, the effect of etravirine on the transplacental passage of TDF and abacavir was assessed using in situ dually perfused rat placenta. RESULTS: We confirmed significant inhibition of ABCG2 but not ABCB1 by etravirine in hoechst accumulation assays. In transport studies on MDCKII-ABCG2 monolayers etravirine completely abolished the ABCG2-mediated transfer of [3H]-TDF. Similar effect was observed in [3H]-abacavir albeit at markedly lower etravirine concentration. Using dually perfused rat placenta, etravirine co-administration resulted in reduced fetal-to-maternal passage of TDF but not abacavir. DISCUSSION: Etravirine is able to affect transplacental passage of TDF but not that of abacavir through interactions on ABCG2. These results should be considered when introducing etravirine into TDF-containing cART in pregnancy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Anti-HIV Agents/pharmacology , Placenta/drug effects , Pyridazines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Tenofovir/pharmacology , Animals , Cell Line , Female , Humans , Nitriles , Placenta/metabolism , Pregnancy , Pyrimidines , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...