Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Stat ; 51(6): 1210-1226, 2024.
Article in English | MEDLINE | ID: mdl-38628445

ABSTRACT

We examine the use of time series data, derived from Electric Cell-substrate Impedance Sensing (ECIS), to differentiate between standard mammalian cell cultures and those infected with a mycoplasma organism. With the goal of easy visualization and interpretation, we perform low-dimensional feature-based classification, extracting application-relevant features from the ECIS time courses. We can achieve very high classification accuracy using only two features, which depend on the cell line under examination. Initial results also show the existence of experimental variation between plates and suggest types of features that may prove more robust to such variation. Our paper is the first to perform a broad examination of ECIS time course features in the context of detecting contamination; to combine different types of features to achieve classification accuracy while preserving interpretability; and to describe and suggest possibilities for ameliorating plate-to-plate variation.

2.
Int J Biostat ; 16(1)2019 12 05.
Article in English | MEDLINE | ID: mdl-31811802

ABSTRACT

We present new methods for cell line classification using multivariate time series bioimpedance data obtained from electric cell-substrate impedance sensing (ECIS) technology. The ECIS technology, which monitors the attachment and spreading of mammalian cells in real time through the collection of electrical impedance data, has historically been used to study one cell line at a time. However, we show that if applied to data from multiple cell lines, ECIS can be used to classify unknown or potentially mislabeled cells, factors which have previously been associated with the reproducibility crisis in the biological literature. We assess a range of approaches to this new problem, testing different classification methods and deriving a dictionary of 29 features to characterize ECIS data. Most notably, our analysis enriches the current field by making use of simultaneous multi-frequency ECIS data, where previous studies have focused on only one frequency; using classification methods to distinguish multiple cell lines, rather than simple statistical tests that compare only two cell lines; and assessing a range of features derived from ECIS data based on their classification performance. In classification tests on fifteen mammalian cell lines, we obtain very high out-of-sample predictive accuracy. These preliminary findings provide a baseline for future large-scale studies in this field.


Subject(s)
Biophysics/methods , Cell Line/classification , Cytological Techniques/methods , Supervised Machine Learning , Animals , Electric Impedance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...