Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
2.
Transbound Emerg Dis ; 65(6): 1657-1663, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29873893

ABSTRACT

Lumpy skin disease (LSD) is an emerging infectious disease of cattle. Since 2012, it has been seen throughout the Middle East region. The aim of this study was to compare the humoral response of three different dosages of the RM65 sheep pox (SPP) vaccine to assess the use of ten times sheep dose of the RM65 vaccine against lumpy skin disease, and to explore the possible causes of, and characterize the side effects caused by the RM65 vaccine. A blinded randomized collected study comprised 57 clinically normal, Holstein Friesian cattle which were randomly assigned into three experimental groups of 17 cattle according to the vaccine dose used (one, five and ten times the dose used for sheep in the field, and a control group of six cattle that did not receive the vaccine. Experimental animals were monitored closely for the development of any abnormality or side effects. Serum samples were collected for 6 weeks and were tested using serum neutralization assay. Decrease in total milk production was observed a week after vaccination and by the fifth week of the experiment, it had returned to prevaccination levels. Clinical side effects were seen in five animals that belong only to the group that received ten times of the SPP vaccine dose. Observed side effects included fever, decreased feed intake and milk production, as well as skin lesions. Skin nodules appeared between 7 and 17 days postvaccination, and remained for 11-17 days. Systemic reactions were likely to be associated with higher dosage and all affected cattle recovered uneventfully. Animals that received the highest dose (ten times the sheep dose) showed the best humoral response. The actual efficacy of the different concentration of the SPP RM65 should be evaluated based on a challenge experiment in a controlled environment.


Subject(s)
Communicable Diseases, Emerging/veterinary , Lumpy Skin Disease/prevention & control , Lumpy skin disease virus/immunology , Vaccination/veterinary , Viral Vaccines/administration & dosage , Animals , Antibodies, Viral/blood , Cattle , Communicable Diseases, Emerging/blood , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/virology , Female , Lumpy Skin Disease/blood , Lumpy Skin Disease/virology , Male , Middle East , Random Allocation , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/blood , Viral Vaccines/blood
3.
Vaccine ; 33(28): 3256-61, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26056063

ABSTRACT

The safety, immunogenicity and efficacy of three commercially available vaccines against lumpy skin disease (LSD) in cattle have been evaluated using a combination of vaccine challenge experiments and the monitoring of immune responses in vaccinated animals in the field. The three vaccines evaluated in the study included two locally produced (Ethiopian) vaccines (lumpy skin disease virus (LSDV) Neethling and Kenyan sheep and goat pox (KSGP) O-180 strain vaccines) and a Gorgan goat pox (GTP) vaccine manufactured by Jordan Bio-Industries Centre (JOVAC). The latter vaccine was evaluated for the first time in cattle against LSDV. The Ethiopian Neethling and KSGPO-180 vaccines failed to provide protection in cattle against LSDV, whereas the Gorgan GTP vaccine protected all the vaccinated calves from clinical signs of LSD. There was no significant difference in protective efficacy detected between two dosage levels (P=0.2, P=0.25, and P=0.1 for KSGP, Neethling and Gorgan vaccines, respectively). Additionally, the Gorgan GTP vaccinated cattle showed stronger levels of cellular immune responses measured using Delayed-Type Hypersensitivity (DTH) reactions at the vaccination site indicating higher levels of immunogenicity produced by the GTPV vaccine in cattle, as opposed to the other two vaccines. This study indicated, for the first time, that the Gorgan GTP vaccine can effectively protect cattle against LSDV and that the Neethling and KSGP O-180 vaccine were not protective. The results emphasise the need for molecular characterization of the Neethling and KSGP O-180 vaccine seed viruses used for vaccine production in Ethiopia. In addition, the potency and efficacy testing process of the Ethiopian LSD Neethling and KSGP O-180 vaccines should be re-evaluated.


Subject(s)
Capripoxvirus/immunology , Lumpy Skin Disease/prevention & control , Lumpy skin disease virus/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Cattle , Ethiopia , Sheep , Vaccination/veterinary , Vaccines, Attenuated/administration & dosage , Viral Vaccines/adverse effects
4.
Antiviral Res ; 109: 1-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24973760

ABSTRACT

Lumpy skin disease is of significant economic impact for the cattle industry in Africa. The disease is currently spreading aggressively in the Near East, posing a threat of incursion to Europe and Asia. Due to cross-protection within the Capripoxvirus genus, sheep pox virus (SPPV) vaccines have been widely used for cattle against lumpy skin disease virus (LSDV). In the Middle East and the Horn of Africa these vaccines have been associated with incomplete protection and adverse reactions in cattle post-vaccination. The present study confirms that the real identity of the commonly used Kenyan sheep and goat pox vaccine virus (KSGP) O-240 is not SPPV but is actually LSDV. The low level attenuation of this virus is likely to be not sufficient for safe use in cattle, causing clinical disease in vaccinated animals. In addition, Isiolo and Kedong goat pox strains, capable of infecting sheep, goats and cattle are identified for potential use as broad-spectrum vaccine candidates against all capripox diseases.


Subject(s)
Capripoxvirus/isolation & purification , Lumpy Skin Disease/virology , Lumpy skin disease virus/isolation & purification , Viral Vaccines/isolation & purification , Animals , Capripoxvirus/classification , Capripoxvirus/genetics , Capripoxvirus/immunology , Cattle , Goat Diseases/virology , Goats , Lumpy Skin Disease/prevention & control , Lumpy skin disease virus/classification , Lumpy skin disease virus/genetics , Lumpy skin disease virus/immunology , Molecular Sequence Data , Phylogeny , Sheep , Sheep Diseases/virology , Vaccination , Vaccines, Attenuated/classification , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Viral Vaccines/genetics , Viral Vaccines/immunology
5.
Ticks Tick Borne Dis ; 5(2): 113-20, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24287140

ABSTRACT

Lumpy skin disease (LSD) is caused by lumpy skin disease virus (LSDV), a member of the genus Capripoxvirus. Transmission of the virus has been associated with haematophagous insects such as Stomoxys calcitrans as well as Aedes and Culex species of mosquitoes. Recent studies have reported the transmission of the virus by Amblyomma hebraeum, Rhipicephalus appendiculatus, and Rhipicephalus decoloratus ticks and the presence of LSDV in saliva of A. hebraeum and R. appendiculatus ticks. The aim of this study was to determine which tick organs become infected by LSDV following intrastadial infection and transstadial persistence of the virus in A. hebraeum and R. appendiculatus ticks. Nymphal and adult ticks were orally infected by feeding them on LSDV-infected cattle. Partially fed adult ticks were processed for testing while nymphs were fed to repletion and allowed to moult to adults before being processed for testing. The infection in tick organs was determined by testing for the presence of the viral antigen using monoclonal antibodies with immunohistochemical staining. The viral antigen was detected in salivary glands, haemocytes, synganglia, ovaries, testes, fat bodies, and midgut. Since the virus was shown to be able to cross the midgut wall and infect various tick organs, this may indicate potential for biological development and transmission of LSDV in ticks. This study strengthens the previously reported evidence of the occurrence of LSDV in tick saliva.


Subject(s)
Immunohistochemistry/methods , Ixodidae/virology , Lumpy Skin Disease/transmission , Lumpy skin disease virus/isolation & purification , Animals , Cattle , Lumpy Skin Disease/virology
6.
Exp Appl Acarol ; 62(1): 67-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23975564

ABSTRACT

Lumpy skin disease (LSD), an acute, sub-acute or inapparent disease of cattle, is caused by lumpy skin disease virus (LSDV), a member of the genus Capripoxvirus in the family Poxviridae. LSD is characterised by high fever, formation of circumscribed skin lesions and ulcerative lesions on the mucous membranes of the mouth, respiratory and digestive tracts. It is an economically important disease due to the permanent damage to hides, the reduction in productivity and trade restrictions imposed on affected areas. Transmission has been associated with blood-feeding insects such as stable flies (Stomoxysis calcitrans) and mosquitoes (Aedes aegypti). Mechanical (intrastadial) and transstadial transmission by Amblyomma hebraeum and Rhipicephalus appendiculatus as well as transovarial transmission by R. decoloratus have been reported. In this study transovarial passage of LSDV to larvae and subsequent transmission to recipient animals were demonstrated. The finding of transovarial passage of LSDV in female ticks shows the potential for A. hebraeum, R. appendiculatus and R. decoloratus to be reservoir hosts for LSDV.


Subject(s)
Lumpy Skin Disease/transmission , Lumpy skin disease virus/isolation & purification , Rhipicephalus/virology , Animals , Arthropod Vectors/virology , Cattle , Female , Infectious Disease Transmission, Vertical , Larva/virology , Male , Ovary/virology
7.
PLoS One ; 8(10): e75971, 2013.
Article in English | MEDLINE | ID: mdl-24116084

ABSTRACT

Sheep pox virus (SPPV), goat pox virus (GTPV) and lumpy skin disease virus (LSDV) are very closely related viruses of the Capripoxvirus (CaPV) genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons, respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV infection and to epidemiological studies.


Subject(s)
Capripoxvirus/isolation & purification , DNA, Viral/genetics , DNA/genetics , Genotyping Techniques/economics , Poxviridae Infections/veterinary , Animals , Capripoxvirus/genetics , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/virology , Cost-Benefit Analysis , Genome, Viral , Genotyping Techniques/methods , Goat Diseases/diagnosis , Goat Diseases/virology , Goats , Poxviridae Infections/diagnosis , Poxviridae Infections/virology , Sensitivity and Specificity , Sheep , Sheep Diseases/diagnosis , Sheep Diseases/virology
8.
BMC Vet Res ; 9: 90, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23634704

ABSTRACT

BACKGROUND: Sheep poxvirus (SPPV), Goat poxvirus (GTPV) and Lumpy skin disease virus (LSDV) are the most serious poxviruses of ruminants. They are double stranded DNA viruses of the genus Capripoxvirus, (subfamily Chordopoxvirinae) within the family Poxviridae. The aim of this study was to develop a Loop-mediated isothermal AMPlification (LAMP) assay for the detection of Capripoxvirus (CaPV) DNA. RESULTS: A single LAMP assay targeting a conserved region of the CaPV P32 gene was selected from 3 pilot LAMP assays and optimised by adding loop primers to accelerate the reaction time. This LAMP assay successfully detected DNA prepared from representative CaPV isolates (SPPV, GTPV and LSDV), and did not cross-react with DNA extracted from other mammalian poxviruses. The analytical sensitivity of the LAMP assay was determined to be at least 163 DNA copies/µl which is equivalent to the performance reported for diagnostic real-time PCR currently used for the detection of CaPV. LAMP reactions were monitored with an intercalating dye using a real-time PCR machine, or by agarose-gel electrophoresis. Furthermore, dual labelled LAMP products (generated using internal LAMP primers that were conjugated with either biotin or fluorescein) could be readily visualised using a lateral-flow device. CONCLUSIONS: This study provides a simple and rapid approach to detect CaPV DNA that may have utility for use in the field, or in non-specialised laboratories where expensive equipment is not available.


Subject(s)
Capripoxvirus/genetics , DNA, Viral/genetics , Nucleic Acid Amplification Techniques/veterinary , Poxviridae Infections/veterinary , Animals , Capripoxvirus/chemistry , DNA, Viral/analysis , Electrophoresis, Agar Gel/veterinary , Nucleic Acid Amplification Techniques/methods , Poxviridae Infections/diagnosis , Poxviridae Infections/genetics , Poxviridae Infections/virology , Real-Time Polymerase Chain Reaction/veterinary , Reproducibility of Results , Sensitivity and Specificity
9.
Ticks Tick Borne Dis ; 4(4): 329-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545323

ABSTRACT

Lumpy skin disease (LSD) is an economically important acute or sub-acute disease of cattle that occurs across Africa and in the Middle East. The aim of this study was to assess whether Rhipicephalus decoloratus ticks were able to transmit lumpy skin disease virus (LSDV) transovarially. Uninfected, laboratory-bred R. decoloratus larvae were placed to feed on experimentally infected "donor" cattle. After completion of the life cycle on donor animals, fully engorged adult female ticks were harvested and allowed to lay eggs. Larvae that hatched from these eggs were then transferred to feed on uninfected "recipient" cattle. The latter became viraemic and showed mild clinical disease with characteristic skin lesions and markedly enlarged precrural and subscapular lymph nodes. This is the first report of transovarial transmission of poxviruses by R. decoloratus ticks, and the importance of this mode of transmission in the spread of LSDV in endemic settings requires further investigation.


Subject(s)
Lumpy Skin Disease/transmission , Lumpy skin disease virus/physiology , Rhipicephalus/classification , Rhipicephalus/virology , Animals , Cattle , Female , Larva/virology , Lumpy Skin Disease/virology
10.
J Virol Methods ; 179(2): 419-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22138682

ABSTRACT

Capripoxviruses, which are endemic in much of Africa and Asia, are the aetiological agents of economically devastating poxviral diseases in cattle, sheep and goats. The aim of this study was to validate a high-throughput real-time PCR assay for routine diagnostic use in a capripoxvirus reference laboratory. The performance of two previously published real-time PCR methods were compared using commercially available reagents including the amplification kits recommended in the original publication. Furthermore, both manual and robotic extraction methods used to prepare template nucleic acid were evaluated using samples collected from experimentally infected animals. The optimised assay had an analytical sensitivity of at least 63 target DNA copies per reaction, displayed a greater diagnostic sensitivity compared to conventional gel-based PCR, detected capripoxviruses isolated from outbreaks around the world and did not amplify DNA from related viruses in the genera Orthopoxvirus or Parapoxvirus. The high-throughput robotic DNA extraction procedure did not adversely affect the sensitivity of the assay compared to manual preparation of PCR templates. This laboratory-based assay provides a rapid and robust method to detect capripoxviruses following suspicion of disease in endemic or disease-free countries.


Subject(s)
Capripoxvirus/isolation & purification , DNA, Viral/isolation & purification , High-Throughput Screening Assays/methods , Poxviridae Infections/veterinary , Real-Time Polymerase Chain Reaction/methods , Veterinary Medicine/methods , Virology/methods , Animals , Automation/methods , Capripoxvirus/genetics , Cattle , Cattle Diseases/diagnosis , Cattle Diseases/virology , DNA, Viral/genetics , Goat Diseases/diagnosis , Goat Diseases/virology , Goats , Poxviridae Infections/diagnosis , Sensitivity and Specificity , Sheep , Sheep Diseases/diagnosis , Sheep Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...