Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Mol Pathol ; 110: 104280, 2019 10.
Article in English | MEDLINE | ID: mdl-31265815

ABSTRACT

Platelet-derived growth factor-B (PDGF-B) is a growth factor that plays an important role in the progression of mesangial proliferative glomerulonephritis (MsPGN). PDGF-B may contribute to mesangioproliferative changes and is overexpressed in MsPGN. Recently, small interfering RNAs (siRNAs) have been widely used for gene silencing effects in experimental models of renal diseases. Nanoparticle-based therapeutics are preferred for reasons such as increasing therapeutic efficacy and reducing toxic effects caused by high doses. The distribution of nanoparticles to the kidney is a significant advantage in siRNA delivery. The aim of this study was to investigate the efficacy of chitosan/siRNA nanoplexes in silencing of PDGF-B and PDGFR-ß genes in kidney and to decrease mesangial cell proliferation and matrix accumulation in MsPGN model induced by anti-Thy-1.1 antibody. The therapeutic effects of chitosan/siPDGF-B + siPDGFR-ß nanoplexes in glomerulonephritic rats were studied by molecular, biochemical, and histopathologic evaluations. Chitosan/siPDGF-B + siPDGFR-ß nanoplexes markedly reduced PDGF-B and PDGFR-ß mRNA and protein expressions in experimental MsPGN model. Histopathologic examination results showed that the silencing of PDGF-B and its receptor PDGFR-ß led to reduction in mesangial cell proliferation and matrix accumulation. The use of chitosan/siPDGF-B + siPDGFR-ß nanoplexes for silencing the PDGF-B pathway in MsPGN can be considered as a new effective therapeutic strategy.


Subject(s)
Cell Proliferation/genetics , Chitosan/chemistry , Glomerulonephritis/therapy , Mesangial Cells/metabolism , Proto-Oncogene Proteins c-sis/genetics , RNA Interference , RNA, Small Interfering/genetics , Receptor, Platelet-Derived Growth Factor beta/genetics , Animals , Apoptosis/genetics , Disease Models, Animal , Glomerulonephritis/genetics , Glomerulonephritis/metabolism , Humans , Male , Mesangial Cells/pathology , Nanoparticles/chemistry , Proto-Oncogene Proteins c-sis/metabolism , RNA, Small Interfering/chemistry , Rats, Sprague-Dawley , Receptor, Platelet-Derived Growth Factor beta/metabolism
3.
AAPS PharmSciTech ; 18(4): 1031-1042, 2017 May.
Article in English | MEDLINE | ID: mdl-27975193

ABSTRACT

Mesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-ß. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-ß, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-ß gene silencing efficiencies of PDGF-B and PDGFR-ß targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-ß-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.


Subject(s)
Chitosan , Gene Transfer Techniques , Proto-Oncogene Proteins c-sis/pharmacology , Receptor, Platelet-Derived Growth Factor beta/pharmacology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Glomerulonephritis, Membranoproliferative/therapy , Humans , Mesangial Cells/drug effects , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transfection/methods
4.
Cytotechnology ; 68(4): 1033-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26134852

ABSTRACT

Establishing stable cell lines are useful tools to study the function of various genes and silence or induce the expression of a gene of interest. Nonviral gene transfer is generally preferred to generate stable cell lines in the manufacturing of recombinant proteins. In this study, we aimed to establish stable recombinant HEK-293 cell lines by transfection of chitosan complexes preparing with pDNA which contain LacZ and GFP genes. Chitosan which is a cationic polymer was used as gene delivery system. Stable HEK-293 cell lines were established by transfection of cells with complexes which were prepared with chitosan and pVitro-2 plasmid vector that contains neomycin drug resistance gene, beta gal and GFP genes. The transfection efficiency was shown with GFP expression in the cells using fluorescence microscopy. Beta gal protein expression in stable cells was examined by beta-galactosidase assay as enzymatically and X-gal staining method as histochemically. Full complexation was shown in the above of 1/1 ratio in the chitosan/pDNA complexes. The highest beta-galactosidase activity was obtained with transfection of chitosan complexes. Beta gal gene expression was 15.17 ng/ml in the stable cells generated by chitosan complexes. In addition, intensive blue color was observed depending on beta gal protein expression in the stable cell line with X-gal staining. We established a stable HEK-293 cell line that can be used for recombinant protein production or gene expression studies by transfecting the gene of interest.

5.
Int J Pharm ; 478(1): 147-154, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25445537

ABSTRACT

RNA interference (RNAi) holds considerable promise as a novel therapeutic strategy in the silencing of disease-causing genes. The development of effective delivery systems is important for the use of small interfering RNA (siRNA) as therapy. In the present study, we investigated the effect on breast cancer cell lines and the co-delivery of liposomes containing siHIF1-α and siVEGF. In order to achieve the co-delivery of siHIF1-α and siVEGF and to obtain lower cytotoxicity, higher transfection and silencing efficiency, in this study, we used chitosan-coated liposomal formulation as the siRNA delivery system. The obtained particle size and zeta potential values show that the chitosan coating process is an effective parameter for particle size and the zeta potential of liposomes. The liposome formulations loaded with siHIF1-α and siVEGF showed good stability and protected siRNA from serum degradation after 24-h of incubation. The expression level of VEGF mRNA was markedly suppressed in MCF-7 and MDA-MB435 cells transfected with chitosan-coated liposomes containing HIF1-α and VEGF siRNA, respectively (95% and 94%). In vitro co-delivery of siVEGF and siHIF1-α using chitosan-coated liposome significantly inhibited VEGF (89%) and the HIF1-α (62%) protein expression when compared to other liposome formulations in the MDA-MB435 cell. The co-delivery of siVEGF and siHIF1-α was greatly enhanced in the vitro gene silencing efficiency. In addition, chitosan-coated liposomes showed 96% cell viability. Considering the role of VEGF and HIF1-α in breast cancer, siRNA-based therapies with chitosan coated liposomes may have some promises in cancer therapy.


Subject(s)
Chitosan/administration & dosage , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Small Interfering/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Cell Line, Tumor , Cell Survival/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Gene Silencing , Humans , Liposomes , Particle Size , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 719-25, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25448971

ABSTRACT

In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Electrochemical Techniques , Electrons , Humans , Models, Molecular , Neoplasms/drug therapy , Spectrophotometry, Ultraviolet , Thiosemicarbazones/chemical synthesis
7.
Biol Pharm Bull ; 36(12): 1907-14, 2013.
Article in English | MEDLINE | ID: mdl-24432377

ABSTRACT

Targeted posttranscriptional gene silencing by RNA interference (RNAi) has garnered considerable interest as an attractive new class of drugs for several diseases, such as cancer. Chitosan and protamine are commonly used as a vehicle to deliver and protect small interfering RNA (siRNA), but the strong interaction still remains to be modulated for efficient siRNA uptake and silencing. Therefore, in this study, ternary nanoplexes containing chitosan and protamine were designed to substantially enhance the siRNA efficiency. Binary and ternary nanoplexes were prepared at different the ratios of moles of the amine groups of cationic polymers to those of the phosphate ones of siRNA (N/P) ratios and characterized in terms of size, zeta potential, morphology and serum stability. The silencing efficiencies and cytotoxicities of prepared nanoplexes were evaluated by enzyme-linked immunosorbent assay (ELISA) (for human vascular endothelial growth factor; hVEGF) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. The mean diameter of ternary nanoplexes ranged from 151 to 282 nm, depending on the weight ratio between polymers and siRNA. The gene silencing effect after transfection with ternary nanoplexes (chitosan/siRNA/protamine 83%) was significantly higher than that with binary nanoplexes (chitosan/siRNA 71% and protamine/siRNA 74%). Ternary nanoplexes showed the highest cellular uptake ability when compared with binary nanoplexes. Ternary nanoplexes did not induce substantial cytotoxicity. Serum stability and the lack of cytotoxicity of the nanoplexes provided advantages over other gene silencing studies. These results suggest ternary nanoplexes have the potential to be an effective siRNA carrier to study the gene silencing effect.


Subject(s)
Nanostructures/administration & dosage , RNA, Small Interfering/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Cell Line, Tumor , Chitosan/chemistry , Gene Silencing , Humans , Nanostructures/chemistry , Protamines/chemistry , RNA, Small Interfering/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...