Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 29: 135-149, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35847173

ABSTRACT

Preeclampsia (PE) is a rising, potentially lethal complication of pregnancy. PE is driven primarily by the overexpression of placental soluble fms-like tyrosine kinase 1 (sFLT1), a validated diagnostic and prognostic marker of the disease when normalized to placental growth factor (PlGF) levels. Injecting cholesterol-conjugated, fully modified, small interfering RNAs (siRNAs) targeting sFLT1 mRNA into pregnant mice or baboons reduces placental sFLT1 and ameliorates clinical signs of PE, providing a strong foundation for the development of a PE therapeutic. siRNA delivery, potency, and safety are dictated by conjugate chemistry, siRNA duplex structure, and chemical modification pattern. Here, we systematically evaluate these parameters and demonstrate that increasing 2'-O-methyl modifications and 5' chemical stabilization and using sequence-specific duplex asymmetry and a phosphocholine-docosanoic acid conjugate enhance placental accumulation, silencing efficiency and safety of sFLT1-targeting siRNAs. The optimization strategy here provides a framework for the chemical optimization of siRNAs for PE as well as other targets and clinical indications.

2.
J Biol Chem ; 298(8): 102183, 2022 08.
Article in English | MEDLINE | ID: mdl-35753352

ABSTRACT

Thioredoxin/glutathione reductase (TXNRD3) is a selenoprotein composed of thioredoxin reductase and glutaredoxin domains. This NADPH-dependent thiol oxidoreductase evolved through gene duplication within the Txnrd family, is expressed in the testes, and can reduce both thioredoxin and glutathione in vitro; however, the function of this enzyme remains unknown. To characterize the function of TXNRD3 in vivo, we generated a strain of mice bearing deletion of Txnrd3 gene. We show that these Txnrd3 knockout mice are viable and without discernable gross phenotypes, and also that TXNRD3 deficiency leads to fertility impairment in male mice. We found that Txnrd3 knockout animals exhibited a lower fertilization rate in vitro, a sperm movement phenotype, and an altered thiol redox status in sperm cells. Proteomic analyses further revealed a broad range of substrates reduced by TXNRD3 during sperm maturation, presumably as a part of sperm quality control. Taken together, these results show that TXNRD3 plays a critical role in male reproduction via the thiol redox control of spermatogenesis.


Subject(s)
Proteomics , Semen , Thioredoxin-Disulfide Reductase/metabolism , Animals , Fertility , Male , Mice , Oxidation-Reduction , Selenoproteins , Semen/metabolism , Spermatogenesis , Sulfhydryl Compounds , Thioredoxin-Disulfide Reductase/genetics , Thioredoxins/genetics , Thioredoxins/metabolism
3.
Mol Ther Nucleic Acids ; 21: 266-277, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32610253

ABSTRACT

Small interfering RNAs (siRNAs) have the potential to treat a broad range of diseases. siRNAs need to be extensively chemically modified to improve their bioavailability, safety, and stability in vivo. However, chemical modifications variably impact target silencing for different siRNA sequences, making the activity of chemically modified siRNA difficult to predict. Here, we systematically evaluated the impact of 3' terminal modifications (2'-O-methyl versus 2'-fluoro) on guide strands of different length and showed that 3' terminal 2'-O-methyl modification negatively impacts activity for >60% of siRNA sequences tested but only in the context of 20- and not 19- or 21-nt-long guide strands. These results indicate that sequence, modification pattern, and structure may cooperatively affect target silencing. Interestingly, the introduction of an extra 2'-fluoro modification in the seed region at guide strand position 5, but not 7, may partially compensate for the negative impact of 3' terminal 2'-O-methyl modification. Molecular modeling analysis suggests that 2'-O-methyl modification may impair guide strand interactions within the PAZ domain of argonaute-2, which may affect target recognition and cleavage, specifically when guide strands are 20-nt long. Our findings emphasize the complex nature of modified RNA-protein interactions and contribute to design principles for chemically modified siRNAs.

4.
Nat Biotechnol ; 37(8): 884-894, 2019 08.
Article in English | MEDLINE | ID: mdl-31375812

ABSTRACT

Sustained silencing of gene expression throughout the brain using small interfering RNAs (siRNAs) has not been achieved. Here we describe an siRNA architecture, divalent siRNA (di-siRNA), that supports potent, sustained gene silencing in the central nervous system (CNS) of mice and nonhuman primates following a single injection into the cerebrospinal fluid. Di-siRNAs are composed of two fully chemically modified, phosphorothioate-containing siRNAs connected by a linker. In mice, di-siRNAs induced the potent silencing of huntingtin, the causative gene in Huntington's disease, reducing messenger RNA and protein throughout the brain. Silencing persisted for at least 6 months, with the degree of gene silencing correlating to levels of guide strand tissue accumulation. In cynomolgus macaques, a bolus injection of di-siRNA showed substantial distribution and robust silencing throughout the brain and spinal cord without detectable toxicity and with minimal off-target effects. This siRNA design may enable RNA interference-based gene silencing in the CNS for the treatment of neurological disorders.


Subject(s)
Central Nervous System/metabolism , Gene Expression Regulation/drug effects , Huntingtin Protein/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , Animals , Huntingtin Protein/genetics , Mice , Mutation , RNA, Messenger , RNA, Small Interfering/metabolism
5.
Nat Biotechnol ; 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451990

ABSTRACT

Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.

6.
Nucleic Acids Res ; 46(5): 2185-2196, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29432571

ABSTRACT

Small interfering RNA (siRNA)-based drugs require chemical modifications or formulation to promote stability, minimize innate immunity, and enable delivery to target tissues. Partially modified siRNAs (up to 70% of the nucleotides) provide significant stabilization in vitro and are commercially available; thus are commonly used to evaluate efficacy of bio-conjugates for in vivo delivery. In contrast, most clinically-advanced non-formulated compounds, using conjugation as a delivery strategy, are fully chemically modified (100% of nucleotides). Here, we compare partially and fully chemically modified siRNAs in conjugate mediated delivery. We show that fully modified siRNAs are retained at 100x greater levels in various tissues, independently of the nature of the conjugate or siRNA sequence, and support productive mRNA silencing. Thus, fully chemically stabilized siRNAs may provide a better platform to identify novel moieties (peptides, aptamers, small molecules) for targeted RNAi delivery.


Subject(s)
Drug Delivery Systems/methods , RNA Interference , RNA Processing, Post-Transcriptional , RNA, Small Interfering/genetics , Animals , Aptamers, Nucleotide/chemistry , Cells, Cultured , Female , Genetic Vectors/genetics , HeLa Cells , Humans , Lipids/chemistry , Mice, Inbred C57BL , Peptides/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , Tissue Distribution
7.
Methods Mol Biol ; 1661: 177-192, 2018.
Article in English | MEDLINE | ID: mdl-28917045

ABSTRACT

The trace element selenium (Se) is incorporated into proteins as the amino acid selenocysteine (Sec), which is cotranslationally inserted into specific proteins in response to a UGA codon. Proteins containing Sec at these specific positions are called selenoproteins. Most selenoproteins function as oxidoreductases, while some serve other important functions. There are 25 known selenoprotein genes in humans and 24 in mice. The use of Sec allows selenoproteins to be detected by a convenient method involving metabolic labeling with 75Se. Labeling of cells and whole animals are used for the examination of selenoprotein expression profiles and the investigation of selenoprotein functions. In mammals, nonspecific 75Se insertion is very low, and sensitivity and specificity of selenoprotein detection approaches that of Western blotting. This method allows for the examination of selenoprotein expression and Se metabolism in model and non-model organisms. Herein, we describe experimental protocols for analyzing selenoproteins by metabolic labeling with 75Se both in vitro and in vivo. As an example, the procedure for metabolic labeling of HEK293T human embryonic kidney cells is described in detail. This approach remains a method of choice for the detection of selenoproteins in diverse settings.


Subject(s)
Isotope Labeling , Selenium Radioisotopes , Selenoproteins/analysis , Animals , Autoradiography , Caenorhabditis elegans , Cell Line , Cells, Cultured , Drosophila , Electrophoresis, Polyacrylamide Gel , Humans , Image Processing, Computer-Assisted , Selenocysteine/analysis
8.
Nucleic Acids Res ; 45(13): 7581-7592, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28591791

ABSTRACT

5΄-Vinylphosphonate modification of siRNAs protects them from phosphatases, and improves silencing activity. Here, we show that 5΄-vinylphosphonate confers novel properties to siRNAs. Specifically, 5΄-vinylphosphonate (i) increases siRNA accumulation in tissues, (ii) extends duration of silencing in multiple organs and (iii) protects siRNAs from 5΄-to-3΄ exonucleases. Delivery of conjugated siRNAs requires extensive chemical modifications to achieve stability in vivo. Because chemically modified siRNAs are poor substrates for phosphorylation by kinases, and 5΄-phosphate is required for loading into RNA-induced silencing complex, the synthetic addition of a 5΄-phosphate on a fully modified siRNA guide strand is expected to be beneficial. Here, we show that synthetic phosphorylation of fully modified cholesterol-conjugated siRNAs increases their potency and efficacy in vitro, but when delivered systemically to mice, the 5΄-phosphate is removed within 2 hours. The 5΄-phosphate mimic 5΄-(E)-vinylphosphonate stabilizes the 5΄ end of the guide strand by protecting it from phosphatases and 5΄-to-3΄ exonucleases. The improved stability increases guide strand accumulation and retention in tissues, which significantly enhances the efficacy of cholesterol-conjugated siRNAs and the duration of silencing in vivo. Moreover, we show that 5΄-(E)-vinylphosphonate stabilizes 5΄ phosphate, thereby enabling systemic delivery to and silencing in kidney and heart.


Subject(s)
Organophosphonates/pharmacology , RNA, Small Interfering/metabolism , Vinyl Compounds/pharmacology , Animals , Exoribonucleases/metabolism , Female , Gene Silencing , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Kidney/metabolism , Liver/metabolism , Mice , Models, Molecular , Nucleic Acid Conformation , Phosphorylation , RNA Stability/drug effects , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA-Induced Silencing Complex/chemistry , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Tissue Distribution
9.
Nat Struct Mol Biol ; 24(1): 61-68, 2017 01.
Article in English | MEDLINE | ID: mdl-27870834

ABSTRACT

The ribosome can change its reading frame during translation in a process known as programmed ribosomal frameshifting. These rare events are supported by complex mRNA signals. However, we found that the ciliates Euplotes crassus and Euplotes focardii exhibit widespread frameshifting at stop codons. 47 different codons preceding stop signals resulted in either +1 or +2 frameshifts, and +1 frameshifting at AAA was the most frequent. The frameshifts showed unusual plasticity and rapid evolution, and had little influence on translation rates. The proximity of a stop codon to the 3' mRNA end, rather than its occurrence or sequence context, appeared to designate termination. Thus, a 'stop codon' is not a sufficient signal for translation termination, and the default function of stop codons in Euplotes is frameshifting, whereas termination is specific to certain mRNA positions and probably requires additional factors.


Subject(s)
Euplotes/genetics , Transcriptome , Amino Acid Sequence , Base Sequence , Euplotes/metabolism , Frameshift Mutation , Peptide Chain Termination, Translational , Proteome/genetics , Proteome/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
10.
Nucleic Acid Ther ; 26(2): 86-92, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26595721

ABSTRACT

Preclinical development of RNA interference (RNAi)-based therapeutics requires a rapid, accurate, and robust method of simultaneously quantifying mRNA knockdown in hundreds of samples. The most well-established method to achieve this is quantitative real-time polymerase chain reaction (qRT-PCR), a labor-intensive methodology that requires sample purification, which increases the potential to introduce additional bias. Here, we describe that the QuantiGene(®) branched DNA (bDNA) assay linked to a 96-well Qiagen TissueLyser II is a quick and reproducible alternative to qRT-PCR for quantitative analysis of mRNA expression in vivo directly from tissue biopsies. The bDNA assay is a high-throughput, plate-based, luminescence technique, capable of directly measuring mRNA levels from tissue lysates derived from various biological samples. We have performed a systematic evaluation of this technique for in vivo detection of RNAi-based silencing. We show that similar quality data is obtained from purified RNA and tissue lysates. In general, we observe low intra- and inter-animal variability (around 10% for control samples), and high intermediate precision. This allows minimization of sample size for evaluation of oligonucleotide efficacy in vivo.


Subject(s)
Gene Knockdown Techniques , RNA, Small Interfering/genetics , Animals , Gene Expression , Gene Silencing , High-Throughput Screening Assays , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/therapeutic use , Reproducibility of Results
11.
PLoS One ; 10(10): e0140353, 2015.
Article in English | MEDLINE | ID: mdl-26452064

ABSTRACT

Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7-15 Sec residues depending on species. Assessing an individual's selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys.


Subject(s)
Amino Acid Substitution , Cysteine , Diet , Selenium/pharmacology , Selenocysteine , Selenoprotein P/chemistry , Selenoprotein P/genetics , Amino Acid Sequence , Hep G2 Cells , Humans , Molecular Sequence Data , Phosphates/pharmacology , Selenious Acid/pharmacology , Selenoprotein P/metabolism
12.
Aging Cell ; 14(3): 352-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25677554

ABSTRACT

Mammals differ more than 100-fold in maximum lifespan, which can be altered in either direction during evolution, but the molecular basis for natural changes in longevity is not understood. Divergent evolution of mammals also led to extensive changes in gene expression within and between lineages. To understand the relationship between lifespan and variation in gene expression, we carried out RNA-seq-based gene expression analyses of liver, kidney, and brain of 33 diverse species of mammals. Our analysis uncovered parallel evolution of gene expression and lifespan, as well as the associated life-history traits, and identified the processes and pathways involved. These findings provide direct insights into how nature reversibly adjusts lifespan and other traits during adaptive radiation of lineages.


Subject(s)
Aging/genetics , Biological Evolution , Gene Expression/genetics , Longevity/genetics , Animals , Humans , Mammals , Molecular Sequence Data
13.
Cell Rep ; 8(5): 1354-64, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25176646

ABSTRACT

Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.


Subject(s)
Adaptation, Physiological/genetics , Ecosystem , Genome , Longevity , Mole Rats/genetics , Actins/genetics , Amino Acid Sequence , Animals , Genetic Speciation , Globins/genetics , Insulin/genetics , Melatonin/genetics , Molecular Sequence Data , Pain/genetics , RNA, Ribosomal, 28S/genetics , Thermogenesis/genetics , Transcriptome
14.
Biochem J ; 462(3): 555-65, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24897171

ABSTRACT

SelS (Selenoprotein S) is a selenocysteine-containing protein with roles in ER (endoplasmic reticulum) function and inflammation. It has been implicated in ERAD (ER-associated protein degradation), and clinical studies revealed an association of its promoter polymorphism with cytokine levels and human diseases. However, the pathways and interacting proteins that could shed light on pathogenesis of SelS-associated diseases have not been studied systematically. We performed a large-scale affinity isolation of human SelS and its mutant forms and analysed the proteins that interact with them. All previously known SelS targets and nearly two hundred additional proteins were identified that were remarkably enriched for various multiprotein complexes. Subsequent chemical cross-linking experiments identified the specific interacting sites in SelS and its several targets. Most of these interactions involved coiled-coil domains. The data suggest that SelS participates in intracellular membrane transport and maintenance of protein complexes by anchoring them to the ER membrane.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Selenoproteins/metabolism , Adenosine Triphosphatases/metabolism , Cytochrome-B(5) Reductase/metabolism , HEK293 Cells , HeLa Cells , Humans , Molecular Docking Simulation , Nuclear Proteins/metabolism
15.
RNA ; 20(7): 1023-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24817701

ABSTRACT

Selenocysteine (Sec) is encoded by an UGA codon with the help of a SECIS element present in selenoprotein mRNAs. SECIS-binding protein (SBP2/SCBP-2) mediates Sec insertion, but the roles of its domains and the impact of its deficiency on Sec insertion are not fully understood. We used Caenorhabditis elegans to examine SBP2 function since it possesses a single selenoprotein, thioredoxin reductase-1 (TRXR-1). All SBP2 described so far have an RNA-binding domain (RBD) and a Sec-incorporation domain (SID). Surprisingly, C. elegans SBP2 lacks SID and consists only of an RBD. An sbp2 deletion mutant strain ablated Sec incorporation demonstrating SBP2 essentiality for Sec incorporation. Further in silico analyses of nematode genomes revealed conservation of SBP2 lacking SID and maintenance of Sec incorporation linked to TRXR-1. Remarkably, parasitic plant nematodes lost the ability to incorporate Sec, but retained SecP43, a gene associated with Sec incorporation. Interestingly, both selenophosphate synthetase (SPS) genes are absent in plant parasitic nematodes, while only Cys-containing SPS2 is present in Sec-incorporating nematodes. Our results indicate that C. elegans and the nematode lineage provide key insights into Sec incorporation and the evolution of Sec utilization trait, selenoproteomes, selenoproteins, and Sec residues. Finally, our study provides evidence of noncanonical translation initiation in C. elegans, not previously known for this well-established animal model.


Subject(s)
Adaptation, Biological/genetics , Caenorhabditis elegans/metabolism , Evolution, Molecular , Gene Silencing , Metabolic Networks and Pathways/genetics , Selenocysteine/metabolism , Amino Acid Sequence , Animals , Base Pairing , Base Sequence , Caenorhabditis elegans/genetics , Codon, Terminator , Molecular Sequence Data , Phylogeny , RNA, Transfer/genetics , RNA, Transfer/metabolism , Selenocysteine/genetics , Selenoproteins/genetics
16.
J Biol Chem ; 289(22): 15350-62, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24719327

ABSTRACT

S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.


Subject(s)
Endothelial Cells/enzymology , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Methyltransferases/metabolism , RNA, Transfer, Amino Acyl/metabolism , S-Adenosylhomocysteine/metabolism , Cell Adhesion/physiology , Endothelial Cells/drug effects , Homocysteine/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/metabolism , Leukocytes/cytology , Methylation , Oxidative Stress/physiology , RNA, Transfer, Ser/metabolism , S-Adenosylmethionine/metabolism , Selenium/pharmacology , Selenoproteins/metabolism , Glutathione Peroxidase GPX1
17.
Nat Commun ; 4: 2212, 2013.
Article in English | MEDLINE | ID: mdl-23962925

ABSTRACT

Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt's bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4-8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt's bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt's bat.


Subject(s)
Chiroptera/genetics , Genome/genetics , Longevity/genetics , Receptor, IGF Type 1/genetics , Receptors, Somatotropin/genetics , Amino Acid Sequence , Animals , Base Sequence , Body Weight/physiology , Echolocation/physiology , Hibernation/genetics , Hibernation/physiology , Male , Molecular Sequence Data , Reproduction/genetics , Reproduction/physiology , Sequence Alignment , Sequence Analysis, DNA , Transcriptome/genetics
18.
Nucleic Acids Res ; 41(14): 6952-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716634

ABSTRACT

It is thought that the SelenoCysteine Insertion Sequence (SECIS) element and UGA codon are sufficient for selenocysteine (Sec) insertion. However, we found that UGA supported Sec insertion only at its natural position or in its close proximity in mammalian thioredoxin reductase 1 (TR1). In contrast, Sec could be inserted at any tested position in mammalian TR3. Replacement of the 3'-UTR of TR3 with the corresponding segment of a Euplotes crassus TR restricted Sec insertion into the C-terminal region, whereas the 3'-UTR of TR3 conferred unrestricted Sec insertion into E. crassus TR, in which Sec insertion is normally limited to the C-terminal region. Exchanges of 3'-UTRs between mammalian TR1 and E. crassus TR had no effect, as both proteins restricted Sec insertion. We further found that these effects could be explained by the use of selenoprotein-specific SECIS elements. Examination of Sec insertion into other selenoproteins was consistent with this model. The data indicate that mammals evolved the ability to limit Sec insertion into natural positions within selenoproteins, but do so in a selenoprotein-specific manner, and that this process is controlled by the SECIS element in the 3'-UTR.


Subject(s)
Codon , Selenocysteine/metabolism , Selenoproteins/genetics , 3' Untranslated Regions , HEK293 Cells , Humans , Selenoproteins/chemistry , Selenoproteins/metabolism
19.
J Biol Chem ; 288(21): 14709-15, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23589299

ABSTRACT

Antibiotics target bacteria by interfering with essential processes such as translation, but their effects on translation in mammalian cells are less well characterized. We found that doxycycline, chloramphenicol, and Geneticin (G418) interfered with insertion of selenocysteine (Sec), which is encoded by the stop codon, UGA, into selenoproteins in murine EMT6 cells. Treatment of EMT6 cells with these antibiotics reduced enzymatic activities and Sec insertion into thioredoxin reductase 1 (TR1) and glutathione peroxidase 1 (GPx1). However, these proteins were differentially affected due to varying errors in Sec insertion at UGA. In the presence of doxycycline, chloramphenicol, or G418, the Sec-containing form of TR1 decreased, whereas the arginine-containing and truncated forms of this protein increased. We also detected antibiotic-specific misinsertion of cysteine and tryptophan. Furthermore, misinsertion of arginine in place of Sec was commonly observed in GPx1 and glutathione peroxidase 4. TR1 was the most affected and GPx1 was the least affected by these translation errors. These observations were consistent with the differential use of two Sec tRNA isoforms and their distinct roles in supporting accuracy of Sec insertion into selenoproteins. The data reveal widespread errors in inserting Sec into proteins and in dysregulation of selenoprotein expression and function upon antibiotic treatment.


Subject(s)
Amebicides/adverse effects , Amino Acid Substitution/drug effects , Anti-Bacterial Agents/adverse effects , Chloramphenicol/adverse effects , Doxycycline/adverse effects , Gentamicins/adverse effects , Selenocysteine/metabolism , Amebicides/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Arginine/genetics , Arginine/metabolism , Cell Line, Tumor , Chloramphenicol/pharmacology , Doxycycline/pharmacology , Gentamicins/pharmacology , Glutathione Peroxidase/biosynthesis , Glutathione Peroxidase/genetics , Humans , Mice , Phospholipid Hydroperoxide Glutathione Peroxidase , RNA, Transfer, Amino Acid-Specific/genetics , RNA, Transfer, Amino Acid-Specific/metabolism , Selenocysteine/genetics , Selenoproteins/biosynthesis , Selenoproteins/genetics , Thioredoxins/biosynthesis , Thioredoxins/genetics , Glutathione Peroxidase GPX1
20.
ISME J ; 7(7): 1333-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23466703

ABSTRACT

The trace element selenium (Se) is required for the biosynthesis of selenocysteine (Sec), the 21st amino acid in the genetic code, but its role in the ecology of harmful algal blooms (HABs) is unknown. Here, we examined the role of Se in the biology and ecology of the harmful pelagophyte, Aureococcus anophagefferens, through cell culture, genomic analyses, and ecosystem studies. This organism has the largest and the most diverse selenoproteome identified to date that consists of at least 59 selenoproteins, including known eukaryotic selenoproteins, selenoproteins previously only detected in bacteria, and novel selenoproteins. The A. anophagefferens selenoproteome was dominated by the thioredoxin fold proteins and oxidoreductase functions were assigned to the majority of detected selenoproteins. Insertion of Sec in these proteins was supported by a unique Sec insertion sequence. Se was required for the growth of A. anophagefferens as cultures grew maximally at nanomolar Se concentrations. In a coastal ecosystem, dissolved Se concentrations were elevated before and after A. anophagefferens blooms, but were reduced by >95% during the peak of blooms to 0.05 nM. Consistent with this pattern, enrichment of seawater with selenite before and after a bloom did not affect the growth of A. anophagefferens, but enrichment during the peak of the bloom significantly increased population growth rates. These findings demonstrate that Se inventories, which can be anthropogenically enriched, can support proliferation of HABs, such as A. anophagefferens through its synthesis of a large arsenal of Se-dependent oxidoreductases that fine-tune cellular redox homeostasis.


Subject(s)
Seawater/parasitology , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Stramenopiles/physiology , Biochemistry , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , DNA Transposable Elements/genetics , Ecology , Genes, Protozoan/genetics , Proteome , Selenium/pharmacology , Stramenopiles/drug effects , Stramenopiles/genetics , Stramenopiles/growth & development , Stramenopiles/metabolism , Trace Elements/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...