Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 473(2207): 20170242, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29225491

ABSTRACT

This work, part II in a series, presents an efficient method for evaluation of wave scattering by doubly periodic diffraction gratings at or near what are commonly called 'Wood anomaly frequencies'. At these frequencies, there is a grazing Rayleigh wave, and the quasi-periodic Green function ceases to exist. We present a modification of the Green function by adding two types of terms to its lattice sum. The first type are transversely shifted Green functions with coefficients that annihilate the growth in the original lattice sum and yield algebraic convergence. The second type are quasi-periodic plane wave solutions of the Helmholtz equation which reinstate certain necessary grazing modes without leading to blow-up at Wood anomalies. Using the new quasi-periodic Green function, we establish, for the first time, that the Dirichlet problem of scattering by a smooth doubly periodic scattering surface at a Wood frequency is uniquely solvable. We also present an efficient high-order numerical method based on this new Green function for scattering by doubly periodic surfaces at and around Wood frequencies. We believe this is the first solver able to handle Wood frequencies for doubly periodic scattering problems in three dimensions. We demonstrate the method by applying it to acoustic scattering.

2.
Proc Math Phys Eng Sci ; 472(2191): 20160255, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27493573

ABSTRACT

This work, part I in a two-part series, presents: (i) a simple and highly efficient algorithm for evaluation of quasi-periodic Green functions, as well as (ii) an associated boundary-integral equation method for the numerical solution of problems of scattering of waves by doubly periodic arrays of scatterers in three-dimensional space. Except for certain 'Wood frequencies' at which the quasi-periodic Green function ceases to exist, the proposed approach, which is based on smooth windowing functions, gives rise to tapered lattice sums which converge superalgebraically fast to the Green function-that is, faster than any power of the number of terms used. This is in sharp contrast to the extremely slow convergence exhibited by the lattice sums in the absence of smooth windowing. (The Wood-frequency problem is treated in part II.) This paper establishes rigorously the superalgebraic convergence of the windowed lattice sums. A variety of numerical results demonstrate the practical efficiency of the proposed approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...