Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 818: 137519, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37852528

ABSTRACT

Repeated exposure to psychosocial stress modulates the endocannabinoid system, particularly anandamide (AEA) signaling in brain regions associated with emotional distress. The mTOR protein regulates various neuroplastic processes in the brain disrupted by stress, including adult hippocampal neurogenesis. This kinase has been implicated in multiple effects of cannabinoid drugs and the anti-stress behavioral effects of psychoactive drugs. Therefore, our hypothesis is that enhancing AEA signaling via pharmacological inhibition of the fatty acid amide hydrolase (FAAH) enzyme induces an anti-stress behavioral effect through an mTOR-dependent mechanism. To test this hypothesis, male C57Bl6 mice were exposed to social defeat stress (SDS) for 7 days and received daily treatment with either vehicle or different doses of the FAAH inhibitor, URB597 (0.1; 0.3; 1 mg/Kg), alone or combined with rapamycin. The results suggested that URB597 induced an inverted U-shaped dose-response curve in mice subjected to SDS (with the intermediate dose of 0.3 mg/kg being anxiolytic, and the higher tested dose of 1 mg/Kg being anxiogenic). In a second independent experiment, rapamycin treatment induced an anxiogenic-like response in control mice. However, in the presence of rapamycin, the anxiolytic dose of URB597 treatment failed to reduce stress-induced anxiety behaviors in mice. SDS exposure altered the hippocampal expression of the mTOR scaffold protein Raptor. Furthermore, the anxiogenic dose of URB597 decreased the absolute number of migrating doublecortin (DCX)-positive cells in the dentate gyrus, suggesting an anti-anxiety effect independent of newly generated/immature neurons. Therefore, our results indicate that in mice exposed to repeated psychosocial stress, URB597 fails to counteract the anxiogenic-like response induced by the pharmacological dampening of mTOR signaling.


Subject(s)
Anti-Anxiety Agents , Mice , Male , Animals , Anti-Anxiety Agents/pharmacology , Sirolimus , Mice, Inbred C57BL , Endocannabinoids/pharmacology , TOR Serine-Threonine Kinases , Amidohydrolases , Receptor, Cannabinoid, CB1
2.
iScience ; 25(11): 105278, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36281454

ABSTRACT

A model was previously proposed that DA neurons provide SHH ligand to striatal interneurons, which in turn support the survival of DA neurons through the release of trophic factors such as Glial cell-derived neurotrophic factor (GDNF). However, some key clinical observations do not support this proposed model, and a recent independent study shows that striatal cholinergic neuron survival does not rely on intact DA neuron projections. To resolve this discrepancy, we generated several independent mouse lines to examine the exact role of DA neuron-derived Shh signaling in the maintenance of the basal ganglia circuit and to identify the Shh-producing cells in the adult brain. Our data suggest that the deletion of Shh in DA neurons does not affect DA neuron survival or locomotive function in cKO mice during aging, nor does it affect the long-term survival of cholinergic or FS PV + interneurons in the striatum (STR).

3.
Transl Stroke Res ; 13(5): 830-844, 2022 10.
Article in English | MEDLINE | ID: mdl-35146631

ABSTRACT

Sonic Hedgehog (SHH) signaling has a critical role in mediating developmental neurogenesis and has been implicated in adult subventricular (SVZ) neurogenesis. However, the precise role of Smoothened (SMO) receptor-mediated SHH signaling in adult neurogenesis during aging especially in hippocampal subgranular zone (SGZ) neurogenesis remains undefined. Additionally, our previous study showed that stimulation of SHH signaling post-stroke leads to increased neurogenesis and improved behavioral functions after stroke. However, it is not clear whether SHH signaling in neural stem cells (NSCs) is required for stroke-induced neurogenesis and functional recovery post-stroke. In this study, using conditional knockout (cKO) of SHH signaling receptor Smo gene in NSCs, we show a decreased neurogenesis at both SVZ and SGZ in young-adult mice and an accelerated depletion of neurogenic cells in the process of aging suggesting that SHH signaling is critical in maintaining neurogenesis during aging. Behavior studies revealed that compromised neurogenesis in Smo cKO mice leads to increased anxiety/depression-like behaviors without affecting general locomotor function or spatial and fear-related learning. Importantly, we also show that NSCs with a cKO of SHH signaling abolishes stroke-induced neurogenesis in Smo cKO mice. Compared to control mice, Smo cKO mice also show delayed motor function recovery and increased anxiety level after stroke. Our data highlights the essential role of Smo function in regulating adult neurogenesis and emotional behaviors during both aging and CNS injury such as stroke.


Subject(s)
Neural Stem Cells , Stroke , Animals , Anxiety/etiology , Hedgehog Proteins/genetics , Mice , Neurogenesis/physiology , Signal Transduction/physiology , Stroke/complications
4.
J Neuroinflammation ; 19(1): 3, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983562

ABSTRACT

BACKGROUND: Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward. METHODS: Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems. Additionally, we analyzed the cytokine profile in both microglia ablation models. RESULTS: We discovered that the genetic ablation (Cx3cr1-iDTR + Dtx), but not the pharmacological microglia ablation (PLX5622), displays a surprisingly rapid pathological condition in the brain represented by loss of CSF/ventricles without brain parenchymal swelling. This phenotype was observed both in MRI and histological analysis. To our surprise, we discovered that the iDTR allele alone leads to the loss of CSF/ventricles phenotype following diphtheria toxin (Dtx) treatment independent of cre expression. To examine the underlying mechanism for the loss of CSF in the Cx3cr1-iDTR ablation and iDTR models, we additionally investigated the cytokine profile in the Cx3cr1-iDTR + Dtx, iDTR + Dtx and the PLX models. We found increases of multiple cytokines in the Cx3cr1-iDTR + Dtx but not in the pharmacological ablation model nor the iDTR + Dtx mouse brains at the time of CSF loss (3 days after the first Dtx injection). This result suggests that the upregulation of cytokines is not the cause of the loss of CSF, which is supported by our data indicating that brain parenchyma swelling, or edema are not observed in the Cx3cr1-iDTR + Dtx microglia ablation model. Additionally, pharmacological inhibition of the KC/CXCR2 pathway (the most upregulated cytokine in the Cx3cr1-iDTR + Dtx model) did not resolve the CSF/ventricular loss phenotype in the genetic microglia ablation model. Instead, both the Cx3cr1-iDTR + Dtx ablation and iDTR + Dtx models showed increased activated IBA1 + cells in the choroid plexus (CP), suggesting that CP-related pathology might be the contributing factor for the observed CSF/ventricular shrinkage phenotype. CONCLUSIONS: Our data, for the first time, reveal a robust and global CSF/ventricular space shrinkage pathology in the Cx3cr1-iDTR genetic ablation model caused by iDTR allele, but not in the PLX5622 ablation model, and suggest that this pathology is not due to brain edema formation but to CP related pathology. Given the wide utilization of the iDTR allele and the Cx3cr1-iDTR model, it is crucial to fully characterize this pathology to understand the underlying causal mechanisms. Specifically, caution is needed when utilizing this model to interpret subtle neurologic functional changes that are thought to be mediated by microglia but could, instead, be due to CSF/ventricular loss in the genetic ablation model.


Subject(s)
Brain/drug effects , CX3C Chemokine Receptor 1/metabolism , Cytokines/metabolism , Diphtheria Toxin/metabolism , Microglia/drug effects , Animals , Brain/metabolism , CX3C Chemokine Receptor 1/genetics , Female , Male , Mice , Mice, Transgenic , Microglia/metabolism , Up-Regulation/drug effects
5.
Exp Neurol ; 326: 113168, 2020 04.
Article in English | MEDLINE | ID: mdl-31904386

ABSTRACT

Due to the limitation in treatment window of the rtPA (recombinant tissue plasminogen activator), the development of delayed treatment for stroke is needed. We previously reported that there is a difference in neurogenesis and neuroblast migration patterns in different mouse stroke models (proximal and distal middle cerebral artery occlusion models, pMCAo or dMCAo). Specifically, compared to robust neurogenesis and substantial migration of newly born neuroblasts in pMCAo model, dMCAo only illicit limited neurogenesis and migration of neuroblasts towards ischemic area. One potential reason for this difference is the relative location of ischemic area to white matter and the neurogenic niche (subventricular zone, SVZ). Specifically, white matter could serve as a physical barrier or inhibitory factor to neurogenesis and migration in the dMCAo model. Given that a major difference in human and rodent brains is the content of white matter in the brain, in this study, we further characterize these two models and test the important hypothesis that white matter is an important contributing inhibitory factor for the limited neurogenesis in the dMCAo model. We utilized a genetically inducible NSC-specific reporter mouse line (nestin-CreERT2-R26R-YFP) to label and track NSC proliferation, survival and differentiation in ischemic brain. To test whether myelin is inhibitory to neurogenesis in dMCAo model, we demyelinated mouse brains using cuprizone treatment after stroke and examined whether there is enhanced neurogenesis or migration of neuroblasts cells in stroke mice treated with cuprizone. Our data suggests that demyelination of the brain does not result in enhanced neurogenesis or migration of neuroblasts, supporting that myelin is not a major inhibitory factor for stroke-induced neurogenesis. In addition, our results suggest that in non-stroke mice, demyelination causes decreased neurogenesis in adult brain, indicating a potential positive role of myelin in maintenance of adult neural stem cell niche.


Subject(s)
Chelating Agents , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Neurogenesis/drug effects , Animals , Behavior, Animal , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Cell Differentiation/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Demyelinating Diseases/diagnostic imaging , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells , Stroke/diagnostic imaging , Stroke/therapy , White Matter/drug effects , White Matter/pathology
6.
Acta Physiol (Oxf) ; 228(3): e13373, 2020 03.
Article in English | MEDLINE | ID: mdl-31483934

ABSTRACT

AIM: Whereas some patients have important changes in body core temperature (Tb) during systemic inflammation, others maintain a normal Tb, which is intrinsically associated to immune paralysis. One classical model to study immune paralysis is the use of repeated administration of lipopolysaccharide (LPS), the so-called endotoxin tolerance. However, the neuroimmune mechanisms of endotoxin tolerance remain poorly understood. Hydrogen sulphide (H2 S) is a gaseous neuromodulator produced in the brain by the enzyme cystathionine ß-synthase (CBS). The present study assessed whether endotoxin tolerance is modulated by hypothalamic H2 S. METHODS: Rats with central cannulas (drug microinjection) and intraperitoneal datalogger (temperature record) received a low-dose of lipopolysaccharide (LPS; 100 µg kg-1 ) daily for four consecutive days. Hypothalamic CBS expression and H2 S production rate were assessed, together with febrigenic signalling. Tolerant rats received an inhibitor of H2 S synthesis (AOA, 100 pmol 1 µL-1 icv) or its vehicle in the last day. RESULTS: Antero-ventral preoptic area of the hypothalamus (AVPO) H2 S production rate and CBS expression were increased in endotoxin-tolerant rats. Additionally, hypothalamic H2 S inhibition reversed endotoxin tolerance reestablishing fever, AVPO and plasma PGE2 levels without altering the absent plasma cytokines surges. CONCLUSION: Endotoxin tolerance is not simply a reflection of peripheral reduced cytokines release but actually results from a complex set of mechanisms acting at multiple levels. Hypothalamic H2 S production modulates most of these mechanisms.


Subject(s)
Dinoprostone/biosynthesis , Endotoxins/pharmacology , Hydrogen Sulfide/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Animals , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cytokines/metabolism , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Disease Models, Animal , Drug Tolerance , Fever/drug therapy , Fever/metabolism , Lipopolysaccharides/pharmacology , Male , Preoptic Area/drug effects , Preoptic Area/metabolism , Rats , Rats, Wistar
7.
Neurol Res ; 41(7): 633-643, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31002029

ABSTRACT

Objective: Animal models of chronic pain have demonstrated that glial cells are promising target for development of analgesic drugs. However, preclinical studies on glial response under chronic pain conditions vary depending on the cellular markers, the species used, the experimental design and model. Therefore, we investigate the expression profile of GFAP and Iba-1 during the behavioral manifestation of sensory disorder in inflammatory and neuropathic pain models. Methods: the expression profile of fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) were quantitated in the spinal dorsal horn of Balb/C mice submitted to six models of chronic pain. Protein analysis was performed by western blot and the results colligated with pain-related behavior. Results: Using the same method to quantitate proteins we observed that while GFAP is upregulated after axotomy, partial nerve injury and cutaneous inflammation, its expression is not changed during muscle inflammation, non-inflammatory muscle pain, and in a viral-associated pain. Differently, Iba-1 is downregulated after axotomy but upregulated after partial lesion of peripheral nerve as well as after virus inoculation and during non-inflammatory muscle pain. Cutaneous and muscle inflammation induced no change in Iba-1 expression in the dorsal horn.In spite of a marked time-dependent variation in protein expression, mechanical allodynia was present at any time of all the models investigated. Discussion: Under distinct pain conditions, GFAP and Iba-1 expression is dependent on the origin of the stimulus, disease progression and tissue affected. Moreover, their expression and is not necessarily associated to the behavior manifestation of pain.


Subject(s)
Calcium-Binding Proteins/biosynthesis , Chronic Pain/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Inflammation/metabolism , Microfilament Proteins/biosynthesis , Neuralgia/metabolism , Spinal Cord Dorsal Horn/metabolism , Animals , Disease Models, Animal , Down-Regulation , Inflammation/complications , Inflammation/physiopathology , Male , Mice , Muscles/physiopathology , Sciatic Nerve/injuries , Skin/physiopathology , Up-Regulation
8.
Cell Transplant ; 27(4): 607-621, 2018 04.
Article in English | MEDLINE | ID: mdl-29871513

ABSTRACT

OBJECTIVE: Although cerebral ischemia can activate endogenous reparative processes, such as proliferation of endogenous neural stem cells (NSCs) in the subventricular zone (SVZ) and subgranular zone (SGZ), the majority of these new cells die shortly after injury and do not appropriately differentiate into neurons, or migrate and functionally integrate into the brain. The purpose of this study was to examine a novel strategy for treatment of stroke after injury by optimizing the survival of ischemia-induced endogenous NSCs in the SVZ and SGZ. METHODS: Adult SVZ and SGZ NSCs were grown as neurospheres in culture and treated with a p53 inactivator, pifithrin-α (PFT-α), and an amyloid precursor protein (APP)-lowering drug, posiphen, and effects on neurosphere number, size and neuronal differentiation were evaluated. This combined sequential treatment approach was then evaluated in mice challenged with middle cerebral artery occlusion (MCAo). Locomotor behavior and cognition were evaluated at 4 weeks, and the number of new surviving neurons was quantified in nestin creERT2-YFP mice. RESULTS: PFT-α and posiphen enhanced the self-renewal, proliferation rate and neuronal differentiation of adult SVZ and SGZ NSCs in culture. Their sequential combination in mice challenged with MCAo-induced stroke mitigated locomotor and cognitive impairments and increased the survival of SVZ and SGZ NSCs cells. PFT-α and the combined posiphen+PFT-α treatment similarly improved locomotion behavior in stroke challenged mice. Notably, however, the combined treatment provided significantly more potent cognitive function enhancement in stroke mice, as compared with PFT-α single treatment. INTERPRETATION: Delayed combined sequential treatment with an inhibitor of p53 dependent apoptosis (PFT-α) and APP synthesis (posiphen) proved able to enhance stroke-induced endogenous neurogenesis and improve the functional recovery in stroke animals. Whereas the combined sequential treatment provided no further improvement in locomotor function, as compared with PFT-α alone treatment, suggesting a potential ceiling in the locomotion behavioral outcome in stroke animals, combined treatment more potently augmented cognitive function recovery after stroke.


Subject(s)
Benzothiazoles/therapeutic use , Neurogenesis , Physostigmine/analogs & derivatives , Recovery of Function , Stroke/drug therapy , Stroke/physiopathology , Toluene/analogs & derivatives , Animals , Atrophy , Benzothiazoles/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Self Renewal/drug effects , Cell Survival/drug effects , Cells, Cultured , Cognition/drug effects , Drug Therapy, Combination , Lateral Ventricles/pathology , Lateral Ventricles/physiopathology , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Motor Activity/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurogenesis/drug effects , Physostigmine/pharmacology , Physostigmine/therapeutic use , Recovery of Function/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Toluene/pharmacology , Toluene/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...