Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
J Clin Med ; 8(3)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862093

ABSTRACT

The main goals of this work were to assess whether the topical administration of glucagon-like peptide-1 (GLP-1) could revert the impairment of the neurovascular unit induced by long-term diabetes (24 weeks) in diabetic mice and to look into the underlying mechanisms. For that reason, db/db mice were treated with eye drops of GLP-1 or vehicle for 3 weeks. Moreover, db/+ mice were used as control. Studies performed in vivo included electroretinogramand the assessment of vascular leakage by using Evans Blue. NF-κB, GFAP and Ki67 proteins were analyzed by immunofluorescence (IF). Additionally, caspase 9, AMPK, IKBα, NF-κB, AKT, GSK3, ß-catenin, Bcl-xl, and VEGF were analyzed by WB. Finally, VEGF, IL-1ß, IL-6, TNF-α, IL-18, and NLRP3 were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. We found that topical administration of GLP-1 reverted reactive gliosis and albumin extravasation, and protected against apoptosis and retinal dysfunction. Regarding the involved mechanisms, GLP-1 exerted an anti-inflammatory action by decreasing NF-κB, inflammosome, and pro-inflammatory factors. In addition, it also decreased VEGF expression. Furthermore, GLP-1 promoted cell survival by increasing the anti-apoptotic protein Bcl-xl and the signaling pathway Akt/GSK3b/ß-catenin. Finally, Ki67 results revealed that GLP-1 treatment could induce neurogenesis. In conclusion, the topical administration of GLP-1 reverts the impairment of the neurovascular unit by modulating essential pathways involved in the development of diabetic retinopathy (DR). These beneficial effects on the neurovascular unit could pave the way for clinical trials addressed to confirm the effectiveness of GLP-1 in early stages of DR.

2.
Endocrinol. diabetes nutr. (Ed. impr.) ; 65(4): 200-205, abr. 2018. graf
Article in English | IBECS | ID: ibc-172150

ABSTRACT

Introduction: Vascular endothelial growth factor (VEGF) plays an essential role in development of diabetic macular edema (DME). While there is evidence suggesting that silymarin, a flavonoid extracted from Silybum marianum, could be useful for prevention and treatment of diabetic nephropathy, no studies have been conducted in diabetic retinopathy (DR). The aim of this study was to assess the effect of silymarin on disruption of inner blood retinal barrier (BRB), the primary cause of DME. Materials and methods: Human retinal endothelial cells (HRECs) were cultured under standard (5.5mM D-glucose) and diabetogenic conditions (25mM D-glucose and 25mM D-glucose + recombinant vascular endothelial growth factor [rVEGF, 25mg/mL]). To assess cell viability, three concentrations of silymarin were tested (2, 4 and 10μg/mL). The effect of silymarin on HREC disruption was determined using a dextran (70kD) permeability asssay. Results: No differences were found in the viability of HRECs treated with 2 or 4μg/mL of silymarin as compared to untreated cells, but viability significantly decreased after using 10 μg/mL. The concentration of 4 μg/mL was therefore selected. Silymarin (4μg/mL) caused a significant decrease in VEGF-induced permeability in both media with 5.5nM (422±58 vs. 600±72 ng/mL/cm2; p<0.03) and 25nM of D-glucose (354 ± 28 vs. 567 ± 102 ng/mL/cm2; p<0.04). Discussion: Our results show that silymarin is effective for preventing hyperpermeability induced by diabetic conditions in HRECs. Further studies are needed to assess whether silymarin could be useful to treat DME (AU)


Introducción: El Vascular endothelial growth factor (VEGF) juega un papel esencial en el desarrollo del edema macular diabético (EMD). Existe evidencia que indica que el uso de la silimarina, extracto flavonoide del Silybum marianum, podría ser útil en la prevención y el tratamiento de la nefropatía diabética pero no se dispone de datos en retinopatía diabética (RD). El objetivo del estudio es evaluar el efecto de la silimarina sobre la disrupción de la barrera hematorretininana, que es la causa primaria del EMD. Material y métodos: Células endoteliales de retina humana (HRECs) se cultivaron en condiciones estándar (5.5mM de D-glucosa) y en condiciones suprafisiológicas de glucosa (25mM de D-glucosa y 25mM de D-glucosa + VEGF 25mg/dl). Para evaluar la viabilidad de las células se probaron 3 concentraciones de silimarina (2, 4 y 10μg/ml). El efecto de la silimarina sobre la disrupción de las HRECs se determinó mediante análisis de permeabilidad a dextrano (70kD). Resultados: No se observaron diferencias en la viabilidad de las HRECs tratadas con 2 o 4μg/ml de silimarina en comparación con las células no tratadas, pero se observó una reducción de la viabilidad con la concentración de 10μg/ml. Por consiguiente, se seleccionó la concentración de 4μg/ml de silimarina. La silimarina (4μg/ml) produjo un descenso significativo de la permeabilidad inducida por VEGF tanto en medio con 5.5mM de D-glucosa (422 ±58 vs. 600 ±72 ng/ml/cm2; p<0.03) como en medio con 25mM de D-glucosa (354±28 vs. 567±102 ng/ml/cm2; p<0.04). Discusión: Nuestros resultados demuestran que la silimarina es efectiva para prevenir la hiperpermeabilidad inducida por condiciones suprafisiológicas de glucosa en HRECs. Son necesarios más estudios para evaluar si la silimarina podría ser útil para el tratamiento del EMD (AU)


Subject(s)
Humans , Male , Female , Silymarin/therapeutic use , Diabetic Retinopathy/complications , Diabetic Retinopathy/diet therapy , Macular Degeneration/diet therapy , Macular Edema/complications , Endothelial Cells , Dextrans/analysis , Cells, Cultured , Cell Proliferation , Cell Survival , Analysis of Variance
3.
Endocrinol Diabetes Nutr (Engl Ed) ; 65(4): 200-205, 2018 Apr.
Article in English, Spanish | MEDLINE | ID: mdl-29422244

ABSTRACT

INTRODUCTION: Vascular endothelial growth factor (VEGF) plays an essential role in development of diabetic macular edema (DME). While there is evidence suggesting that silymarin, a flavonoid extracted from Silybum marianum, could be useful for prevention and treatment of diabetic nephropathy, no studies have been conducted in diabetic retinopathy (DR). The aim of this study was to assess the effect of silymarin on disruption of inner blood retinal barrier (BRB), the primary cause of DME. MATERIALS AND METHODS: Human retinal endothelial cells (HRECs) were cultured under standard (5.5mM D-glucose) and diabetogenic conditions (25mM D-glucose and 25mM D-glucose + recombinant vascular endothelial growth factor [rVEGF, 25mg/mL]). To assess cell viability, three concentrations of silymarin were tested (2, 4 and 10µg/mL). The effect of silymarin on HREC disruption was determined using a dextran (70kD) permeability asssay. RESULTS: No differences were found in the viability of HRECs treated with 2 or 4µg/mL of silymarin as compared to untreated cells, but viability significantly decreased after using 10µg/mL. The concentration of 4 µg/mL was therefore selected. Silymarin (4µg/mL) caused a significant decrease in VEGF-induced permeability in both media with 5.5nM (422±58 vs. 600±72 ng/mL/cm2; p<0.03) and 25nM of D-glucose (354 ± 28 vs. 567 ± 102 ng/mL/cm2; p<0.04). DISCUSSION: Our results show that silymarin is effective for preventing hyperpermeability induced by diabetic conditions in HRECs. Further studies are needed to assess whether silymarin could be useful to treat DME.


Subject(s)
Antioxidants/therapeutic use , Blood-Retinal Barrier/drug effects , Cell Membrane Permeability/drug effects , Diabetic Retinopathy/prevention & control , Endothelial Cells/drug effects , Macular Edema/prevention & control , Retina/cytology , Retina/drug effects , Silymarin/therapeutic use , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...