Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 20286, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31889053

ABSTRACT

Plasmonic biosensing has emerged as the most sensitive label-free technique to detect various molecular species in solutions and has already proved crucial in drug discovery, food safety and studies of bio-reactions. This technique relies on surface plasmon resonances in ~50 nm metallic films and the possibility to functionalize the surface of the metal in order to achieve selectivity. At the same time, most metals corrode in bio-solutions, which reduces the quality factor and darkness of plasmonic resonances and thus the sensitivity. Furthermore, functionalization itself might have a detrimental effect on the quality of the surface, also reducing sensitivity. Here we demonstrate that the use of graphene and other layered materials for passivation and functionalization broadens the range of metals which can be used for plasmonic biosensing and increases the sensitivity by 3-4 orders of magnitude, as it guarantees stability of a metal in liquid and preserves the plasmonic resonances under biofunctionalization. We use this approach to detect low molecular weight HT-2 toxins (crucial for food safety), achieving phase sensitivity~0.5 fg/mL, three orders of magnitude higher than previously reported. This proves that layered materials provide a new platform for surface plasmon resonance biosensing, paving the way for compact biosensors for point of care testing.

2.
Langmuir ; 33(15): 3847-3854, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28340533

ABSTRACT

We show that 4'-nitro-1,1'-biphenyl-4-thiol self-assembled monolayers (NBPT SAMs) on gold can be exchanged with 11-(mercaptoundecyl)triethylene glycol (C11EG3OH) SAMs via vapor deposition (VD). The pristine and the exchanged SAMs obtained by VD as well as solution method (SM) were characterized by X-ray photoelectron spectroscopy (XPS) and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Using surface plasmon resonance (SPR), it is shown that C11EG3OH SAMs on gold obtained by vapor deposition exchange (VDEx) have the same protein resistivity as SAMs obtained by the direct self-assembly process. As expected, the cross-linked NBPT SAM are found to be resistive to both exchange processes, VDEx and solution method exchange (SMEx). In this way, VDEx opens up an elegant and new approach of patterning SAM surfaces in situ at vacuum conditions without using any solvents. By combining electron irradiation-induced chemical lithography of NBPT SAMs with VDEx, biofunctional patterned substrates were engineered and used for immobilization of protein arrays.


Subject(s)
Surface Properties , Gold , Photoelectron Spectroscopy , Sulfhydryl Compounds , Surface Plasmon Resonance , Volatilization
3.
Nanotechnology ; 26(46): 465302, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26510213

ABSTRACT

The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolution transmission electron microscopy as well as Raman spectroscopy. We show that the dense electronic excitation in the wake of the traversing ion yields characteristic nanostructures each of which may be fabricated by choosing the proper irradiation conditions. These nanostructures include unique morphologies such as closed bilayer edges with a given chirality or nanopores within supported as well as freestanding graphene. The length and orientation of the nanopore, and thus of the associated closed bilayer edge, may be simply controlled by the direction of the incoming ion beam. In freestanding graphene, swift heavy ion irradiation induces extremely small openings, offering the possibility to perforate graphene membranes in a controlled way.

4.
Langmuir ; 28(39): 13905-11, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22953697

ABSTRACT

Self-assembled monolayers (SAMs) of 1,1'-biphenyl-4-thiol (H-(C(6)H(4))(2)-SH) on Au(111) were prepared from solution or via vapor deposition in ultrahigh vacuum and characterized by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and X-ray photoelectron spectroscopy (XPS). In contrast to the typically observed for densely packed alkane-thiol SAMs on Au(111) (√3 × âˆš3)R30° structure, the densely packed aromatic biphenylthiol SAMs prepared by both methods exhibit an unusual hexagonal (2 × 2) structure. Upon annealing at 100 °C, this structure evolves into the (2 × 7√3) structure resulting in the formation of highly ordered pinstripes oriented along the [1 -1 0] directions. Lower density SAMs, prepared by vapor deposition in vacuum, show mixed structures comprising the hexagonal (2 × 2) structure and two rectangular arrangements with the unit cells of (3√3 × 9) and (2√3 × 8). An extinction of the (3√3 × 9) structure in the favor of the (2√3 × 8) structure is observed upon annealing at temperatures of ~100 °C.


Subject(s)
Biphenyl Compounds/chemistry , Electrons , Gold/chemistry , Sulfhydryl Compounds/chemistry , Biphenyl Compounds/chemical synthesis , Microscopy, Scanning Tunneling , Molecular Structure , Spectrophotometry , Sulfhydryl Compounds/chemical synthesis , X-Rays
5.
Phys Chem Chem Phys ; 7(24): 4146-9, 2005 Dec 21.
Article in English | MEDLINE | ID: mdl-16474880

ABSTRACT

Oscillatory wetting instabilities driven by capillary-gravitation forces have been explored very recently in the binary fluid Ga-Pb alloy [A. Turchanin, R. Tsekov and W. Freyland, J. Chem. Phys., 2004, 120, 11 171]. This system is characterized by a complete wetting transition at liquid-liquid coexistence. Due to its metallic nature the bulk and interfacial instabilities are strongly coupled via variation of the respective emissivities. In our previous work we have investigated these phenomena at different cooling cycles and at constant temperature inside the miscibility gap. In this study we present for the first time the observations of the oscillatory wetting instabilities also in heating cycles. The interfacial properties of a Ga0.95Pb0.05 alloy at conditions inside the miscibility gap have been investigated by following the second harmonic generation (SHG) intensity changes. Corresponding model calculations of the Pb-rich wetting film instabilities have been performed taking into account the effect of a temperature variation vertical to the bulk sample. The influence of this temperature variation on the occurrence of the oscillations is discussed.


Subject(s)
Alloys/chemistry , Gallium/chemistry , Lead/chemistry , Models, Chemical , Oscillometry , Temperature
6.
J Chem Phys ; 120(23): 11171-82, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15268147

ABSTRACT

We present the first experimental investigation and pertinent theoretical modeling of an interfacial oscillatory instability in a binary fluid alloy, the Ga-Pb system. It is characterized by spinodal decomposition at elevated temperatures and by a complete wetting transition at liquid-liquid coexistence. For the alloy Ga(0.95)Pb(0.05) the fluid interface has been probed by second harmonic generation (SHG) under UHV conditions at temperatures between 740 and 550 K. At conditions inside the miscibility gap clear oscillations of the SHG-intensity with a period of approximately 30 min are found for different cooling cycles and also at constant temperatures. These interfacial oscillatory instabilities simultaneously induce temperature oscillations in the bulk fluid with the same period. This phenomenon can be explained by a periodic variation of the fluid interfacial emissivity. A model has been developed which describes the wetting-dewetting dynamics by hydrodynamic equations within the Reynolds approximation. It is found that the interfacial oscillatory instability is determined by capillary-gravitation instability. The model quantitatively describes the time evolution of the interfacial and temperature oscillations and gives the correct value of the oscillation period. A detailed comparison of the experimental and model results is given.

7.
J Chem Phys ; 121(23): 12005-9, 2004 Dec 15.
Article in English | MEDLINE | ID: mdl-15634163

ABSTRACT

We have studied the interfacial characteristics of Ga-rich liquid Ga-Bi alloys at various compositions and temperatures up to 300 degrees C by different electron spectroscopies under ultrahigh vacuum conditions. In particular, the thickness and thickness profiles of Bi-rich wetting and surface freezing films have been measured. It is found that at the surface freezing transition the Bi film thickness jumps from approximately 5 A to macroscopic values of over 100 A. This distinct behavior is discussed in comparison with the results in Ga-Pb. In addition, we report first scanning tunneling microscopy observations of the surface structure of a solidified Ga(0.989)Bi(0.011) alloy after passing a surface freezing transition. The topology at room temperature is characterized by extended, atomically flat Bi terraces covered by nanosized triangular two-dimensional Bi islands.

SELECTION OF CITATIONS
SEARCH DETAIL
...