Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674554

ABSTRACT

In the circular economy framework, hydrosols, by-products of the essential oil industry, are gaining attention for their potential in waste reduction and resource reuse. This study analyzed hydrosols from six edible flowers, investigating their chemical composition (VOC-Hyd) and antibacterial properties alongside volatile organic compounds of fresh flowers (VOC-Fs) and essential oils (EOs). Antirrhinum majus exhibited ketones as major VOC-Fs (62.6%) and VOC-Hyd (41.4%), while apocarotenoids dominated its EOs (68.0%). Begonia cucullata showed alkanes (33.7%) and aldehydes (25.7%) as primary VOC-Fs, while alkanes were prevalent in both extracts (65.6% and 91.7% in VOC-Hyd and in EOs, respectively). Calandula officinalis had monoterpenoids in VOC-Fs and VOC-Hyd (89.3% and 49.7%, respectively), while its EOs were rich in sesquiterpenoids (59.7%). Dahlia hortensis displayed monoterpenoid richness in both VOC-Fs and extracts. Monocots species' VOC-Fs (Polianthes tuberosa, Tulbaghia cominsii) were esters-rich, replaced by monoterpenoids in VOC-Hyd. P. tuberosa EO maintained ester richness, while T. cominsii EOs contained a significant percentage of sulfur compounds (38.1%). Antibacterial assays indicated comparable minimum inhibitory concentration profiles across VOC-Hyd: B. calcullata and P. tuberosa against Staphylococcus aureus and Salmonella enterica ser. typhimurium, T. cominsii against Escherichia coli and S. enterica, A. majus and C. officinalis against S. aureus, and D. hortensis against S. enterica.

2.
Appl Microbiol Biotechnol ; 108(1): 299, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619619

ABSTRACT

A novel temperate phage, named Hesat, was isolated by the incubation of a dairy strain of Staphylococcus aureus belonging to spa-type t127 with either bovine or ovine milk. Hesat represents a new species of temperate phage within the Phietavirus genus of the Azeredovirinae subfamily. Its genome has a length of 43,129 bp and a GC content of 35.11% and contains 75 predicted ORFs, some of which linked to virulence. This includes (i) a pathogenicity island (SaPln2), homologous to the type II toxin-antitoxin system PemK/MazF family toxin; (ii) a DUF3113 protein (gp30) that is putatively involved in the derepression of the global repressor Stl; and (iii) a cluster coding for a PVL. Genomic analysis of the host strain indicates Hesat is a resident prophage. Interestingly, its induction was obtained by exposing the bacterium to milk, while the conventional mitomycin C-based approach failed. The host range of phage Hesat appears to be broad, as it was able to lyse 24 out of 30 tested S. aureus isolates. Furthermore, when tested at high titer (108 PFU/ml), Hesat phage was also able to lyse a Staphylococcus muscae isolate, a coagulase-negative staphylococcal strain. KEY POINTS: • A new phage species was isolated from a Staphylococcus aureus bovine strain. • Pathogenicity island and PVL genes are encoded within phage genome. • The phage is active against most of S. aureus strains from both animal and human origins.


Subject(s)
Bacteriophages , Staphylococcal Infections , Humans , Animals , Sheep , Staphylococcus aureus/genetics , Genomics , Milk
3.
Foods ; 12(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231686

ABSTRACT

In recent years, essential oils (EOs) have received interest due to their antibacterial properties. Accordingly, the present study aimed to investigate the effectiveness of the EOs obtained from seven species of Salvia on three strains of Listeria monocytogenes (two serotyped wild strains and one ATCC strain), a bacterium able to contaminate food products and cause foodborne disease in humans. The Salvia species analysed in the present study were cultivated at the Botanic Garden and Museum of the University of Pisa, and their air-dried aerial parts were subjected to hydrodistillation using a Clevenger apparatus. The obtained EOs were analysed via gas chromatography coupled with mass spectrometry for the evaluation of their chemical composition, and they were tested for their inhibitory and bactericidal activities by means of MIC and MBC. The tested Eos showed promising results, and the best outcomes were reached by S. chamaedryoides EO, showing an MIC of 1:256 and an MBC of 1:64. The predominant compounds of this EO were the sesquiterpenes caryophyllene oxide and ß-caryophyllene, together with the monoterpenes bornyl acetate and borneol. These results suggest that these EOs may possibly be used in the food industry as preservatives of natural origins.

4.
RSC Adv ; 12(54): 35358-35366, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540247

ABSTRACT

The COVID-19 pandemic has further confirmed to the community that direct contact with contaminated surfaces and objects represents an important source of pathogen spreading among humans. Therefore, it is of paramount importance to design effective germicidal paints to ensure a rapid and potent disinfectant action of surfaces. In this work, we design novel germicide polymeric coatings by inserting quaternary ammonium and sugar groups on the macromolecular backbone, thus respectively endowing the polymer with germicide features and hydrophilicity to interact with the surfaces. An aliphatic polyketone was selected as a starting polymer matrix that was functionalized with primary amine derivatives via the Paal-Knorr reaction. The resulting polymers were deposited on cellulose filter papers and checkboard charts with excellent coating yield and substrate coverage as determined by scanning electron microscopy for cellulose. Remarkably, the substrates coated by the functional polymers bearing quaternary ammonium compounds showed excellent bactericide properties with antibacterial rate of 99% and logarithmic reduction of >3. Notably, the polymers with higher hydrophobicity showed better retention on the substrate after being treated with water at neutral pH.

5.
Antibiotics (Basel) ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36139947

ABSTRACT

Colistin is an "old" antimicrobial belonging to the class of polymyxins, initially discovered in 1947 [...].

6.
Antibiotics (Basel) ; 11(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35203874

ABSTRACT

Salmonellosis is one of the most important zoonoses in Europe and the world. Human infection may evolve in severe clinical diseases, with the need for hospitalization and antimicrobial treatment. Colistin is now considered an important antimicrobial to treat infections from multidrug- resistant Gram-negative bacteria, but the spreading of mobile colistin-resistance (mcr) genes has limited this option. We aimed to evaluate colistin minimum inhibitory concentration and the presence of mcr (mcr-1 to mcr-9) genes in 236 Salmonella isolates previously collected from different animals and the environment between 2000 and 2020. Overall, 17.79% of isolates were resistant to colistin; no differences were observed in relation to years of isolation (2000-2005, 2009-2014, and 2015-2020), Salmonella enterica subspecies (enterica, salamae, diarizonae, and houtenae), origin of samples (domestic animals, wildlife, and environment), or animal category (birds, mammals, and reptiles); only recently isolated strains from houseflies showed the most resistance. Few isolates (5.93%) scored positive for mcr genes, in particular for mcr-1, mcr-2, mcr-4, mcr-6, and mcr-8; furthermore, only 2.54% of isolates were mcr-positive and colistin-resistant. Detected resistance to colistin was equally distributed among all examined Salmonella isolates and not always related to the presence of mcr genes.

7.
Pathogens ; 11(2)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35215071

ABSTRACT

Exotic reptiles are increasingly being bred as pets in many countries around the world, including Poland. However, the close contact between reptiles and their owners provides favourable conditions for the transmission of zoonotic pathogens. In this work, we examined E. coli isolates from 67 captive reptiles regarding their virulence, antibiotic susceptibility, phylogenetic affiliation, and genetic diversity. The incidence of E. coli was highest in snakes (51.6%, 16 isolates/31 samples), and slightly lower in turtles (44.4%, 8/18) and lizards (44.4%, 8/18). Genes encoding virulence factors were confirmed in 50% of isolates and the most common were the traT (37.5%, n = 12), fyuA (21.87%, n = 7), and irp-2 (15.62%, n = 5). The majority (71.87%, n = 23) of E. coli isolates were susceptible to all of the antimicrobial substances used in the study. Streptomycin resistance (21.87%, n = 7) was the most frequent, while resistance to other antimicrobial substances was sporadic. One strain (3.12%) was classified as multidrug-resistant. The presence of resistance genes (aadA, tetA, tetB, tetM, and blaTEM) was confirmed in 12.5% (n = 4) of the isolates. The majority (65.6%, n = 21) of E. coli isolates represented the B1 phylogenetic group. (GTG)5-PCR fingerprinting showed considerable genetic variation in the pool of tested isolates. The frequency of E. coli in reptiles is much lower than in mammals or birds. Due to the presence of virulence genes, characteristic of both intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC), reptilian strains of E. coli have pathogenic potential, and therefore people in contact with these animals should follow good hygiene practices.

8.
Microorganisms ; 9(3)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809073

ABSTRACT

Brucellosis is a zoonosis caused by different Brucella species. Wild boar (Sus scrofa) could be infected by some species and represents an important reservoir, especially for B. suis biovar 2. This study aimed to investigate the prevalence of Brucella spp. by serological and molecular assays in wild boar hunted in Tuscany (Italy) during two hunting seasons. From 287 animals, sera, lymph nodes, livers, spleens, and reproductive system organs were collected. Within sera, 16 (5.74%) were positive to both rose bengal test (RBT) and complement fixation test (CFT), with titres ranging from 1:4 to 1:16 (corresponding to 20 and 80 ICFTU/mL, respectively). Brucella spp. DNA was detected in four lymph nodes (1.40%), five epididymides (1.74%), and one fetus pool (2.22%). All positive PCR samples belonged to Brucella suis biovar 2. The results of this investigation confirmed that wild boar represents a host for B.suis biovar. 2 and plays an important role in the epidemiology of brucellosis in central Italy. Additionally, epididymis localization confirms the possible venereal transmission.

9.
Comp Immunol Microbiol Infect Dis ; 76: 101656, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33915404

ABSTRACT

Teat-dipping is one of the most effective methods to prevent mammary infections in ruminants, including sub-clinical mastitis caused by coagulase-negative staphylococci (CoNS). Improper disinfectant application could expose microorganisms to sub-inhibitory concentrations leading to phenotypic variations. In this study, 12 chlorhexidine-digluconate (CHDG)-tolerant (of which 4 qac positive) and 12 benzalkonium chloride (BC)-tolerant (of which 7 qac-positive) CoNS isolates from ovine milk were exposed to sub-inhibitory concentrations of CHDG and BC, respectively. Changes in disinfectant susceptibility against BC and CHDG, antibiotic resistance against 12 antibiotics and biofilm production were then assessed for both groups. After CHDG stress, 67 % and 83 % of the CHDG-stressed isolates doubled their MICs for BC and CHDG, respectively and 2 qac-negative isolates showed a four-fold increase of their MBCs for CHDG. After BC stress, MICs for BC and CHDG doubled in 58 % and 83 % of the BC-stressed isolates, respectively, while one qac-positive isolate increased four-fold the MIC for BC. Cross-resistance to antibiotics was assessed by disc diffusion method. Some qac-positive isolates varied their resistance profile, while a blaZ-positive isolate showed a resistant phenotype against ampicillin only after the exposure to the disinfectant. As for qac-positive isolates, one CHDG-stressed and 2 BC-stressed increased their resistance to kanamycin and cefoxitin, respectively. The Congo Red Agar test was carried out to assess the in vitro slime production: all isolates were negative after stress. In conclusion, sub-inhibitory exposure to disinfectants may affect disinfectant and antibiotic susceptibility, the latter in particular for qac-positive isolates and those hosting unexpressed antibiotic resistance genes.


Subject(s)
Disinfectants , Sheep Diseases , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Coagulase , Disinfectants/pharmacology , Drug Resistance, Bacterial , Female , Microbial Sensitivity Tests/veterinary , Milk , Sheep , Staphylococcal Infections/veterinary , Staphylococcus
10.
Animals (Basel) ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923497

ABSTRACT

Domestic dogs (Canis lupus familiaris) used for wild boar (Sus scrofa) hunting may represent incidental hosts for several zoonotic pathogens. This investigation aimed to evaluate the presence of anti-Leptospira antibodies and the occurrence, antimicrobial resistance, and virulence of Salmonella spp., Yersinia enterocolitica, and Listeria monocytogenes in sera and rectal swabs collected from 42 domestic hunting dogs in the Tuscany region (Italy). Regarding Leptospira, 31 out of 42 serum samples (73.8%) were positive and serogroup Pomona was the most detected (71.4%) at titers between 1:100 and 1:400. Four Salmonella isolates (9.52%) were obtained, all belonging to serotype Infantis; two of them showed antimicrobial resistance to streptomycin, while pipB and sopE presence was assessed in all but one isolate. Concerning Yersinia enterocolitica, seven isolates (16.7%) were obtained, six belonging to biotype 1 and one to biotype 4. Resistance to amoxicillin-clavulanic acid, cephalothin, and ampicillin was detected. Biotype 4 presented three of the virulence genes searched (ystA, ystB, inv), while isolates of biotype 1 showed only one gene. No Listeria monocytogenes was isolated from dog rectal swabs. The results suggest that hunting dogs are exposed to different bacterial zoonotic agents, potentially linked to their work activity, and highlight the possible health risks for humans.

11.
Pathogens ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498307

ABSTRACT

Wild boar is an animal the population of which constantly increases in Europe. This animal plays an important role as a reservoir for several pathogens, including three of the most important zoonoses: salmonellosis, yersiniosis and listeriosis. The aim of this investigation was to evaluate the occurrence of antimicrobial-resistant and virulence factor genes of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes isolated from wild boar in Tuscany (Central Italy). During two consequent hunting seasons (2018/2019 and 2019/2020), rectal swabs, spleens and livers were collected from 287 hunted wild boar to isolate strains. Each isolate was tested to investigate its antimicrobial resistance and to detect virulence factor genes by PCR. Eighteen Salmonella strains (6.27%) were isolated. Of these, 66.7% were resistant to streptomycin, 13.4% to cephalothin, 6.67% to imipenem and one isolate (6.67%) was resistant simultaneously to five antimicrobials. Moreover, the most detected genes were sopE (73.4%), pipB (66.7%), sodCI (53.3%), spvR and spvC (46.7%). In total, 54 (17.8%) Yersinia enterocolitica were isolated; of them, 26 (48.1%), 9 (16.7%), 17 (31.5%), 1 (1.85%) and 1 (1.85%) belonged to biotypes 1, 2, 3, 4 and 5, respectively. All strains (100%) demonstrated resistance to cephalothin and 70.4% to amoxicillin-clavulanic acid, 55.6% to ampicillin, and 37.0% to cefoxitin. Additionally, the most detected genes were ystA (25.9%), inv (24.1%), ail (22.2%), ystB (18.5%) and virF (14.8%). Finally, only one Listeria monocytogenes isolate (0.35%) was obtained, belonging to serogroup IVb, serovar 4b, and it was found to be resistant to cefoxitin, cefotaxime and nalidixic acid. The results highlighted the role of wild boar as a carrier for pathogenic and antimicrobial-resistant Salmonella spp., Yersinia enterocolitica and Listeria monocytogens, representing a possible reservoir for domestic animals and human pathogens.

12.
Animals (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348681

ABSTRACT

Salmonella is one of the most important zoonotic pathogens worldwide. Swine represent typical reservoirs of this bacterium and a frequent source of human infection. Some intrinsic traits make some serovars or strains more virulent than others. Twenty-nine Salmonella spp. isolated from pigs belonging to 16 different serovars were analyzed for gastric acid environment resistance, presence of virulence genes (mgtC, rhuM, pipB, sopB, spvRBC, gipA, sodCI, sopE), antimicrobial resistance and presence of antimicrobial resistance genes (blaTEM, blaPSE-1, aadA1, aadA2, aphA1-lab, strA-strB, tetA, tetB, tetC, tetG, sul1, sul2, sul3). A percentage of 44.83% of strains showed constitutive and inducible gastric acid resistance, whereas 37.93% of strains became resistant only after induction. The genes sopB, pipB and mgtC were the most often detected, with 79.31%, 48.28% and 37.93% of positive strains, respectively. Salmonella virulence plasmid genes were detected in a S. enterica sup. houtenae ser. 40:z4,z23:-strain. Fifteen different virulence profiles were identified: one isolate (ser. Typhimurium) was positive for 6 genes, and 6 isolates (3 ser. Typhimurium, 2 ser. Typhimurium monophasic variant and 1 ser. Choleraesuis) scored positive for 5 genes. None of the isolates resulted resistant to cefotaxime and ciprofloxacin, while all isolates were susceptible to ceftazidime, colistin and gentamycin. Many strains were resistant to sulfonamide (75.86%), tetracycline (51.72%), streptomycin (48.28%) and ampicillin (31.03%). Twenty different resisto-types were identified. Six strains (4 ser. Typhimurium, 1 ser. Derby and 1 ser. Typhimurium monophasic variant) showed the ASSuT profile. Most detected resistance genes sul2 (34.48%), tetA (27.58%) and strA-strB (27.58%). Great variability was observed in analyzed strains. S. ser. Typhimurium was confirmed as one of the most virulent serovars. This study underlines that swine could be a reservoir and source of pathogenic Salmonella strains.

13.
PLoS Negl Trop Dis ; 14(12): e0008982, 2020 12.
Article in English | MEDLINE | ID: mdl-33370309

ABSTRACT

Leptospirosis is a re-emerging and globally spread zoonosis caused by pathogenic genomospecies of Leptospira. Wild boar (Sus scrofa) are an important Leptospira host and are increasing in population all over Europe. The aim of this investigation was to evaluate Leptospira spp. infection in the reproductive systems of wild boar hunted in two Italian regions: Tuscany and Sardinia. From 231 animals, reproductive system tissue samples (testicles, epididymides, uteri) as well as placentas and fetuses were collected. Bacteriological examination and Real-Time PCR were performed to detect pathogenic Leptospira (lipL32 gene). Leptospires were isolated from the testicles and epididymides of one adult and two subadult wild boar. Four isolates from the two subadult males were identified as Leptospira interrogans serogroup Australis by MLST, whereas Leptospira kirschneri serogroup Grippotyphosa was identified from the adult testicles and epididymis. Using Real-Time PCR, 70 samples were positive: 22 testicles (23.16%) and 22 epididymides (23.16%), 10 uteri (7.35%), 3 placentas (6.66%), and 13 fetuses (28.88%). Amplification of the rrs2 gene identified L. interrogans and L. kirschneri species. The results from this investigation confirmed that wild boar represent a potential source of pathogenic Leptospira spp. Isolation of Leptospira serogroups Australis and Grippotyphosa from the male reproductive system and the positive Real-Time PCR results from both male and female samples could suggest venereal transmission, as already demonstrated in pigs. Furthermore, placentas and fetuses were positive for the lipL32 target, and this finding may be related to a possible vertical transmission of pathogenic Leptospira.


Subject(s)
Leptospira interrogans/isolation & purification , Leptospira/isolation & purification , Leptospirosis/epidemiology , Leptospirosis/veterinary , Reproductive Tract Infections/microbiology , Sus scrofa/microbiology , Animals , Bacterial Typing Techniques , Epididymis/microbiology , Female , Fetus/parasitology , Genotyping Techniques , Italy/epidemiology , Leptospira/genetics , Leptospira interrogans/genetics , Male , Multilocus Sequence Typing , Placenta/microbiology , Pregnancy , Swine/microbiology , Testis/microbiology , Uterus/microbiology
14.
Animals (Basel) ; 10(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255500

ABSTRACT

Neonatal diarrhoea (ND), post-weaning diarrhoea (PWD) and oedema disease (OD) are among the most important diseases affecting pig farming due to economic losses. Among the main aetiological agents, strains of Escherichia coli are identified as the major responsible pathogens involved. Several strategies have been put in place to prevent these infections and, today, research is increasingly studying alternative methods to antibiotics to reduce the antibiotic resistance phenomenon. Essential oils (EOs) are among the alternative tools that are being investigated. In this study, the in vitro effectiveness of winter savory and manuka essential oils and their mixtures in different proportions against strains of E. coli isolated from episodes of disease in pigs was evaluated. The EOs alone demonstrated slight antibacterial effectiveness, whereas the blends, by virtue of their synergistic action, showed remarkable activity, especially the 70%-30% winter savory-manuka blend, showing itself as a potential tool for prevention and therapy.

15.
Vet Sci ; 7(4)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233581

ABSTRACT

The employment of natural substances such as beehive products with a preventive and therapeutic purpose has been a widespread custom since ancient times. In this investigation, the antibacterial activity of 41 honey samples from different Ukraine regions has been evaluated. For each honey, melissopalynological and physico-chemical analysis were performed in order to determine botanical origin, pH, glucose and fructose contents and free acidity. So, antibacterial activity against Staphylococcusaureus CCM 4223, Listeria monocytogenes ATCC 7644, Salmonella enterica serovar Typhimurium CCM 3807 and Escherichia coli ATCC 25922 was assessed through the determination of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values by the microdilutions method. The results show that the most susceptible bacterial strain was L. monocytogenes. Its growth was inhibited at a honey concentration ranging from 0.094 to 0.188 g/mL. The most resistant bacterial strain was S. aureus. As concerns MBC values, L. monocytogenes was the most susceptible bacteria, while S. aureus was the most resistant. Helianthus spp. honeys was the most effective against all tested bacterial strains, followed by Robinia spp. and multifloral honeys. Promising results for MIC tests have been found for Brassica spp.

16.
Vet Sci ; 7(2)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517254

ABSTRACT

The effects of veterinary drugs, dietary supplements and non-protein amino acids on the European honey bee (Apis mellifera ligustica Spinola, 1806) ventriculum microbial profile were investigated. Total viable aerobic bacteria, Enterobacteriaceae, staphylococci, Escherichia coli, lactic acid bacteria, Pseudomonas spp., aerobic bacterial endospores and Enterococcus spp. were determined using a culture-based method. Two veterinary drugs (Varromed® and Api-Bioxal®), two commercial dietary supplements (ApiHerb® and ApiGo®) and two non-protein amino acids (GABA and beta-alanine) were administered for one week to honey bee foragers reared in laboratory cages. After one week, E. coli and Staphylococcus spp. were significantly affected by the veterinary drugs (p < 0.001). Furthermore, dietary supplements and non-protein amino acids induced significant changes in Staphylococcus spp., E. coli and Pseudomonas spp. (p < 0.001). In conclusion, the results of this investigation showed that the administration of the veterinary drugs, dietary supplements and non-protein amino acids tested, affected the ventriculum microbiological profile of Apis mellifera ligustica.GABA; beta-alanine; oxalic acid; diet effect; microbiota.

17.
Vet Med Sci ; 6(4): 985-991, 2020 11.
Article in English | MEDLINE | ID: mdl-32558332

ABSTRACT

Pathogenic Leptospira is widespread in rodents, the most studied reservoir and the main hosts involved in its transmission. In Italy, among rodents, Hystrix cristata (crested porcupine) is the largest species and it is distributed all over the country. In this paper, the isolation and characterization of pathogenic Leptospira spp. from the kidney of H. cristata is reported for the first time. During Autumn 2018, Leptospira detection by real-time PCR and isolation were performed from kidneys of two died female porcupines (an adult and a porcupette). Only for porcupette kidney sample, real-time PCR for pathogenic Leptospira tested positive. The isolated strain was identified as Leptospira interrogans serogroup Pomona serovar Pomona, using the three schemes of multilocus sequence typing. The results show that H. cristata could be a Leptospira host. The infection of serovars Pomona could be related to the habitat shared with wild boar, a typical reservoir host for this serovar.


Subject(s)
Leptospira interrogans serovar pomona/isolation & purification , Leptospirosis/veterinary , Porcupines , Rodent Diseases/diagnosis , Animals , Female , Italy , Leptospira interrogans serovar pomona/classification , Leptospirosis/diagnosis , Leptospirosis/microbiology , Rodent Diseases/microbiology
18.
Animals (Basel) ; 10(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344604

ABSTRACT

Wild boar are among the most widespread wild mammals in Europe. Although this species can act as a reservoir for different pathogens, data about its role as a carrier of pathogenic and antimicrobial-resistant Escherichia coli are still scarce. The aim of this study was to evaluate the occurrence of antimicrobial-resistant and pathogenic Escherichia coli in wild boar in the Tuscany region of Italy. During the hunting season of 2018-2019, E. coli was isolated from 175 of 200 animals and subjected to antimicrobial resistance tests and PCR for detection of resistance and virulence factor genes. The highest resistance rates were against cephalothin (94.3%), amoxicillin-clavulanic acid (87.4%), ampicillin (68.6%), and tetracycline (44.6%). The most detected resistance genes were blaCMY-2 (54.3%), sul1 (38.9%), sul2 (30.9%), and tetG (24.6%). Concerning genes encoding virulence factors, 55 of 175 isolates (31.4%) were negative for all tested genes. The most detected genes were hlyA (47.4%), astA (29.1%), stx2 (24.6%), eaeA (17.1%), and stx1 (11.4%). E. coli was classified as Shiga toxin-producing E. coli (STEC) (21.7%), enterohemorrhagic E. coli (EHEC) (6.3%), enteroaggregative E. coli (EAEC) (5.1%), and atypical enteropathogenic E. coli (aEPEC) (3.4%). Enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and typical enteropathogenic E. coli (tEPEC) were not detected. Our results show that wild boars could carry pathogenic and antimicrobial-resistant E. coli, representing a possible reservoir of domestic animal and human pathogens.

19.
Ecohealth ; 17(1): 85-93, 2020 03.
Article in English | MEDLINE | ID: mdl-32034585

ABSTRACT

Wild boar (Sus scrofa) is one of the large mammals most spread worldwide, including Italy. This animal is highly adaptable, and its population has rapidly increased in many areas in Europe. Central Italy, as well as Tuscany region, is an area particularly suitable for wild boar. In order to verify the role of this animal species in the epidemiology of some important infectious diseases for livestock and humans, a seroepidemiological survey on Brucella spp., Leptospira spp., Mycoplasma hyopneumoniae, Pseudorabies virus (PrV), and Hepatitis E virus (HEV) has been performed on 374 sera collected from wild boar during 2015/2016 and 2016/2017 hunting seasons. Overall, 2 out of 374 sera (0.53%) tested positive to Brucella spp., 33 out of 374 sera (8.82%) tested positive for Leptospira spp., while 79 out of 374 (21.12%) were positive for M. hyopneumoniae. Considering viral pathogens, serology indicated that 107 out of 374 (28.60%) samples scored positive for PrV, while 186 out of 374 (49.73%) for HEV. This investigation indicated that wild boar free ranging in the study area are potential hosts for different etiological agents. This animal could contribute to maintaining and/or disseminating some bacterial or viral pathogens to humans (especially hunters) and domestic animals, especially in free range farms.


Subject(s)
Sus scrofa/microbiology , Swine Diseases/epidemiology , Animals , Antibodies, Viral , Herpesvirus 1, Suid , Humans , Italy/epidemiology , Leptospira , Mycoplasma hyopneumoniae , Seroepidemiologic Studies , Surveys and Questionnaires , Sus scrofa/virology , Swine
20.
Comp Immunol Microbiol Infect Dis ; 68: 101410, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874356

ABSTRACT

Leptospirosis is a re-emerging and widespread zoonosis, worldwide distributed, due to a wide variety of wild and domestic animal species able to act as natural or accidental hosts. During last years, in Europe, as in Italy, wild boar (Sus scrofa) population is increased. This animal represents a reservoir for different etiological agents, such as Leptospira. The aim of this investigation was to evaluate the prevalence of Leptospira spp. in wild boar hunted in Liguria region (Italy) during two-year hunting seasons. From 611 hunted wild boar, kidneys were collected. DNA was extracted from each organ and different targets were used to detect pathogenic (lipL32 gene), intermediate (16S rRNA gene) and saprophytic (23S rRNA gene) Leptospira by Taqman-based RealTime-PCR assays. Overall, kidneys were sampled from 282 adults, 155 sub-adults and 174 young wild boar (in total 314 males and 298 females). By RealTime PCR 77 kidneys were positive and, among these, 74 resulted positive for pathogenic (96.10%) and 3 (3.90%) for intermediate Leptospira. No significant differences in pathogenic Leptospira infection ratio were detected between male (11.50%) and female (12.75%). Only 13 sub-adult animals (8.39%) resulted infected by pathogenic Leptospira; 23 young animals (13.22%) and 38 adult animals (13.47%) were positive. The results of this study confirmed the importance of wild boar in the epidemiology of leptospirosis, which is able to infect other animal species (domestic and wild) including humans. Rarely, intermediate Leptospira could be able to infect wild boar with a renal localization that can contribute to their shedding and circulation.


Subject(s)
Disease Reservoirs/veterinary , Leptospira/isolation & purification , Leptospirosis/veterinary , Sus scrofa/microbiology , Animals , Disease Reservoirs/microbiology , Female , Italy/epidemiology , Kidney/microbiology , Leptospira/genetics , Leptospirosis/epidemiology , Male , Prevalence , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...