Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630738

ABSTRACT

To fulfil the requirements for high-resolution organic light-emitting diode (OLED) displays, precise and high-quality micrometer-scale patterns have to be fabricated inside metal shadow masks. Invar has been selected for this application due to its unique properties, especially a low coefficient of thermal expansion. In this study, a novel cost-efficient method of multi-beam micromachining of invar will be introduced. The combination of a Meopta beam splitting, focusing and monitoring module with a galvanometer scanner and HiLASE high-energy pulse laser system emitting ultrashort pulses at 515 nm allows drilling and cutting of invar foil with 784 beams at once with high precision and almost no thermal effects and heat-affected zone, thus significantly improving the throughput and efficiency.

2.
RSC Adv ; 10(37): 22137-22145, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-35516600

ABSTRACT

In this study, crystallization of amorphous TiO2 nanotube (TNT) layers upon optimized laser annealing is shown. The resulting anatase TNT layers do not show any signs of deformation or melting. The crystallinity of the laser annealed TNT layers was investigated using X-ray diffraction, Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The study of the (photo-)electrochemical properties showed that the laser annealed TNT layers were more defective than conventional TNT layers annealed in a muffle oven at 400 °C, resulting in a higher charge recombination rate and lower photocurrent response. However, a lower overpotential for hydrogen evolution reaction was observed for the laser annealed TNT layer compared to the oven annealed TNT layer.

3.
Opt Express ; 27(17): 24286-24299, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510320

ABSTRACT

We report new observations on picosecond deep ultraviolet coherent beams generated in a CLBO as the fourth and fifth harmonics of a diode pumped high average power Yb:YAG thin disk laser operating at 77 kHz repetition rate at 1030 nm. The effects of the two-photon absorption were observed, e.g. the modification of phase matching conditions, lowering of the conversion efficiency. The fifth harmonic generation (4ω+1ω) was studied for different time delays between both pump beams and for the case of excess input power of the fundamental. The latter effect suggests a possibility of increasing DUV output at short crystals. The highest output power obtained at 257 nm was 7.6 W and 1 W at 206 nm. To our knowledge these DUV output powers rank among the highest for picosecond pulses at the repetition rate of the order of magnitude of 100 kHz.

4.
Opt Lett ; 41(22): 5210-5213, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27842095

ABSTRACT

We report on the generation of the second (515 nm) and fourth (257.5 nm) harmonics from a 100 kHz diode-pumped solid-state laser operating at a wavelength of 1030 nm which uses one Yb:YAG thin disk in the regenerative amplifier and delivers 60 W of the average output power in pulses of 4 ps duration. Thirty-five W in green light and 6 W in deep ultraviolet (DUV) were achieved. The sensitivity of the second harmonic generation efficiency toward the lithium triborate crystal temperature is demonstrated in experiment. The overall conversion efficiency from NIR to DUV of 10% was achieved. The ß-barium borate and cesium lithium borate crystals were used as green to DUV convertors and compared regarding the efficiency and spectral bandwidths. The achieved output power is unique for DUV picosecond pulses.

5.
Opt Lett ; 37(11): 2100-2, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22660134

ABSTRACT

In ultrashort pulse amplification a narrowband gas pump pulse laser has been used for the first time. An all-stage optical parametric chirped pulse amplifier (OPCPA) was driven by a single-shot iodine photodissociation laser. For the first time a broadband amplification was achieved in potassium dihydrogen phosphate crystal at 800 nm seeding. Ti:sapphire laser pulses stretched from 12.5 fs to 250 ps were amplified and compressed to 27 fs at a 0.5 TW output power. The results suggest using narrowband high power gas lasers as OPCPA drivers to generate petawatt beams.

SELECTION OF CITATIONS
SEARCH DETAIL
...