Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dis Model Mech ; 14(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34318329

ABSTRACT

Benign prostatic hyperplasia/lower urinary tract dysfunction (LUTD) affects nearly all men. Symptoms typically present in the fifth or sixth decade and progressively worsen over the remainder of life. Here, we identify a surprising origin of this disease that traces back to the intrauterine environment of the developing male, challenging paradigms about when this disease process begins. We delivered a single dose of a widespread environmental contaminant present in the serum of most Americans [2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 1 µg/kg], and representative of a broader class of environmental contaminants, to pregnant mice and observed an increase in the abundance of a neurotrophic factor, artemin, in the developing mouse prostate. Artemin is required for noradrenergic axon recruitment across multiple tissues, and TCDD rapidly increases prostatic noradrenergic axon density in the male fetus. The hyperinnervation persists into adulthood, when it is coupled to autonomic hyperactivity of prostatic smooth muscle and abnormal urinary function, including increased urinary frequency. We offer new evidence that prostate neuroanatomical development is malleable and that intrauterine chemical exposures can permanently reprogram prostate neuromuscular function to cause male LUTD in adulthood.


Subject(s)
Polychlorinated Dibenzodioxins , Urinary Tract , Adult , Animals , Female , Humans , Male , Mice , Polychlorinated Dibenzodioxins/toxicity , Pregnancy , Prostate , Rats , Rats, Sprague-Dawley
2.
Am J Clin Exp Urol ; 9(1): 121-131, 2021.
Article in English | MEDLINE | ID: mdl-33816700

ABSTRACT

Urinary voiding dysfunction in aging men can cause bothersome symptoms and irreparable tissue damage. Underlying mechanisms are not fully known. We previously demonstrated that subcutaneous, slow-release testosterone and estradiol implants (T+E2) drive a pattern of urinary voiding dysfunction in male mice that resembles that of aging men. The initial goal of this study was to test the hypothesis that prostatic epithelial beta-catenin (Ctnnb1) is required for T+E2-mediated voiding dysfunction. Targeted Ctnnb1 deletion did not significantly change voiding function in control or T+E2 treated mice but led to the surprising discovery that the C57BL/6J × FVB/NJ × 129S1 mixed genetic background onto which Ctnnb1 loss of function alleles were maintained is profoundly susceptible to voiding dysfunction. The mixed background mice develop a more rapid T+E2-mediated increase in spontaneous urine spotting, are more impaired in ability to initiate bladder contraction, and develop larger and heavier bladders than T+E2 treated C57BL/6J pure bred mice. To better understand mechanisms, we separately evaluated contributions of T and E2 and found that E2 mediates voiding dysfunction. Our findings that genetic factors serve as modifiers of responsiveness to T and E2 demonstrate the need to control for genetic background in studies of male voiding dysfunction. We also show that genetic factors could control severity of voiding dysfunction. We demonstrate the importance of E2 as a key mediator of voiding impairment, and show that the concentration of E2 in subcutaneous implants determines the severity of voiding dysfunction in mice, demonstrating that the mouse model is tunable, a factor which is important for future pharmacological intervention studies.

3.
Dev Biol ; 473: 50-58, 2021 05.
Article in English | MEDLINE | ID: mdl-33529704

ABSTRACT

The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.


Subject(s)
Prostate/metabolism , Prostate/pathology , Stem Cells/metabolism , Androgen Antagonists/metabolism , Androgens/metabolism , Animals , Cell Differentiation , Epithelial Cells/metabolism , Humans , Male , Organogenesis , Prostate/embryology , Prostatic Hyperplasia/metabolism , Prostatic Neoplasms/metabolism
4.
Prostate ; 80(11): 872-884, 2020 08.
Article in English | MEDLINE | ID: mdl-32497356

ABSTRACT

BACKGROUND: Castration-insensitive epithelial progenitors capable of regenerating the prostate have been proposed to be concentrated in the proximal region based on facultative assays. Functional characterization of prostate epithelial populations isolated with individual cell surface markers has failed to provide a consensus on the anatomical and transcriptional identity of proximal prostate progenitors. METHODS: Here, we use single-cell RNA sequencing to obtain a complete transcriptomic profile of all epithelial cells in the mouse prostate and urethra to objectively identify cellular subtypes. Pan-transcriptomic comparison to human prostate cell types identified a mouse equivalent of human urethral luminal cells, which highly expressed putative prostate progenitor markers. Validation of the urethral luminal cell cluster was performed using immunostaining and flow cytometry. RESULTS: Our data reveal that previously identified facultative progenitors marked by Trop2, Sca-1, KRT4, and PSCA are actually luminal epithelial cells of the urethra that extend into the proximal region of the prostate, and are resistant to castration-induced androgen deprivation. Mouse urethral luminal cells were identified to be the equivalent of previously identified human club and hillock cells that similarly extend into proximal prostate ducts. Benign prostatic hyperplasia (BPH) has long been considered an "embryonic reawakening," but the cellular origin of the hyperplastic growth concentrated in the periurethral region is unclear. We demonstrate an increase in urethral luminal cells within glandular nodules from BPH patients. Urethral luminal cells are further increased in patients treated with a 5-α reductase inhibitor. CONCLUSIONS: Our data demonstrate that cells of the proximal prostate that express putative progenitor markers, and are enriched by castration in the proximal prostate, are urethral luminal cells and that these cells may play an important role in the etiology of human BPH.


Subject(s)
Prostate/cytology , Stem Cells/cytology , Urethra/cytology , Adolescent , Adult , Animals , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Prostate/metabolism , Stem Cells/metabolism , Urethra/metabolism , Young Adult
5.
Am J Clin Exp Urol ; 8(1): 59-72, 2020.
Article in English | MEDLINE | ID: mdl-32211455

ABSTRACT

A recent study directed new focus on the fetal and neonatal environment as a risk factor for urinary dysfunction in aging males. Male mice were exposed in utero and via lactation (IUL) to the persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and then administered slow-release, subcutaneous implants of testosterone and estradiol (T+E2) as adults to mimic the hormonal environment of aging men. IUL TCDD exposure worsened T+E2-induced voiding dysfunction. Mice in the previous study were genetically prone to prostatic neoplasia and it was therefore unclear whether TCDD exacerbates voiding dysfunction through a malignant or non-malignant mechanism. We demonstrate here that IUL TCDD exposure acts via a non-malignant mechanism to exacerbate T+E2-mediated male mouse voiding dysfunction characterized by a progressive increase in spontaneous void spotting. We deployed a proteomic approach to narrow the possible mechanisms. We specifically tested whether IUL TCDD exacerbates urinary dysfunction by acting through the same prostatic signaling pathways as T+E2. The prostatic protein signature of TCDD/T+E2-exposed mice differed from that of mice exposed to T+E2 alone, indicating that the mechanism of action of TCDD differs from that of T+E2. We identified 3641 prostatic proteins in total and determined that IUL TCDD exposure significantly changed the abundance of 102 proteins linked to diverse molecular and physiological processes. We shed new light on the mechanism of IUL TCDD-mediated voiding dysfunction by demonstrating that the mechanism is independent of tumorigenesis and involves molecular pathways distinct from those affected by T+E2.

6.
Dev Dyn ; 249(6): 741-753, 2020 06.
Article in English | MEDLINE | ID: mdl-32100913

ABSTRACT

BACKGROUND: Colonic atresias in the Fibroblast growth factor receptor 2IIIb (Fgfr2IIIb) mouse model have been attributed to increased epithelial apoptosis and decreased epithelial proliferation at embryonic day (E) 10.5. We therefore hypothesized that these processes would colocalize to the distal colon where atresias occur (atretic precursor) and would be excluded or minimized from the proximal colon and small intestine. RESULTS: We observed a global increase in intestinal epithelial apoptosis in Fgfr2IIIb -/- intestines from E9.5 to E10.5 that did not colocalize to the atretic precursor. Additionally, epithelial proliferations rates in Fgfr2IIIb -/- intestines were statistically indistinguishable to that of controls at E10.5 and E11.5. At E11.5 distal colonic epithelial cells in mutants failed to assume the expected pseudostratified columnar architecture and the continuity of the adjacent basal lamina was disrupted. Individual E-cadherin-positive cells were observed in the colonic mesenchyme. CONCLUSIONS: Our observations suggest that alterations in proliferation and apoptosis alone are insufficient to account for intestinal atresias and that these defects may arise from both a failure of distal colonic epithelial cells to develop normally and local disruptions in basal lamina architecture.


Subject(s)
Apoptosis/physiology , Colon/metabolism , Actins/metabolism , Animals , Apoptosis/genetics , Cadherins/metabolism , Cell Proliferation/physiology , Colon/cytology , Female , Immunohistochemistry , Male , Mice , Vimentin/metabolism , beta Catenin/metabolism
7.
J Pathol ; 250(2): 231-242, 2020 02.
Article in English | MEDLINE | ID: mdl-31674011

ABSTRACT

We genetically engineered expression of an activated form of P110 alpha, the catalytic subunit of PI3K, in mouse prostate epithelium to create a mouse model of direct PI3K activation (Pbsn-cre4Prb;PI3KGOF/+ ). We hypothesized that direct activation would cause rapid neoplasia and cancer progression. Pbsn-cre4Prb;PI3KGOF/+ mice developed widespread prostate intraepithelial hyperplasia, but stromal invasion was limited and overall progression was slower than anticipated. However, the model produced profound and progressive stromal remodeling prior to explicit epithelial neoplasia. Increased stromal cellularity and inflammatory infiltrate were evident as early as 4 months of age and progressively increased through 12 months of age, the terminal endpoint of this study. Prostatic collagen density and phosphorylated SMAD2-positive prostatic stromal cells were expansive and accumulated with age, consistent with pro-fibrotic TGF-ß pathway activation. Few reported mouse models accumulate prostate-specific collagen to the degree observed in Pbsn-cre4Prb;PI3KGOF/+ . Our results indicate a signaling process beginning with prostatic epithelial PI3K and TGF-ß signaling that drives prostatic stromal hypertrophy and collagen accumulation. These mice afford a unique opportunity to explore molecular mechanisms of prostatic collagen accumulation that is relevant to cancer progression, metastasis, inflammation and urinary dysfunction. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/physiology , Collagen/metabolism , Prostate/enzymology , Prostatic Intraepithelial Neoplasia/enzymology , Prostatic Neoplasms/enzymology , Aging/pathology , Animals , Disease Models, Animal , Disease Progression , Epithelium/enzymology , Male , Mice, Mutant Strains , Phosphorylation , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/enzymology , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Intraepithelial Neoplasia/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction , Smad2 Protein/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Transforming Growth Factor beta/physiology
8.
Histochem Cell Biol ; 152(1): 35-45, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30976911

ABSTRACT

Prostate autonomic and sensory axons control glandular growth, fluid secretion, and smooth muscle contraction and are remodeled during cancer and inflammation. Morphogenetic signaling pathways reawakened during disease progression may drive this axon remodeling. These pathways are linked to proliferative activities in prostate cancer and benign prostate hyperplasia. However, little is known about which developmental signaling pathways guide axon investment into prostate. The first step in defining these pathways is pinpointing when axon subtypes first appear in prostate. We accomplished this by immunohistochemically mapping three axon subtypes (noradrenergic, cholinergic, and peptidergic) during fetal, neonatal, and adult stages of mouse prostate development. We devised a method for peri-prostatic axon density quantification and tested whether innervation is uniform across the proximo-distal axis of dorsal and ventral adult mouse prostate. Many axons directly interact with or innervate neuroendocrine cells in other organs, so we examined whether sensory or autonomic axons innervate neuroendocrine cells in prostate. We first detected noradrenergic, cholinergic, and peptidergic axons in prostate at embryonic day (E) 14.5. Noradrenergic and cholinergic axon densities are uniform across the proximal-distal axis of adult mouse prostate while peptidergic axons are denser in the periurethral and proximal regions. Peptidergic and cholinergic axons are closely associated with prostate neuroendocrine cells whereas noradrenergic axons are not. These results provide a foundation for understanding mouse prostatic axon development and organization and, provide strategies for quantifying axons during progression of prostate disease.


Subject(s)
Axons/metabolism , Prostate/embryology , Prostate/innervation , Animals , Axons/pathology , Male , Mice , Mice, Inbred C57BL , Prostate/cytology , Prostate/pathology
9.
PLoS One ; 12(11): e0188413, 2017.
Article in English | MEDLINE | ID: mdl-29145476

ABSTRACT

Though many methods can be used to identify cell types contained in complex tissues, most require cell disaggregation and destroy information about where cells reside in relation to their microenvironment. Here, we describe a polytomous key for cell type identification in intact sections of adult mouse prostate and prostatic urethra. The key is organized as a decision tree and initiates with one round of immunostaining for nerve, epithelial, fibromuscular/hematolymphoid, or vascular associated cells. Cell identities are recursively eliminated by subsequent staining events until the remaining pool of potential cell types can be distinguished by direct comparison to other cells. We validated our identification key using wild type adult mouse prostate and urethra tissue sections and it currently resolves sixteen distinct cell populations which include three nerve fiber types as well as four epithelial, five fibromuscular/hematolymphoid, one nerve-associated, and three vascular-associated cell types. We demonstrate two uses of this novel identification methodology. We first used the identification key to characterize prostate stromal cell type changes in response to constitutive phosphatidylinositide-3-kinase activation in prostate epithelium. We then used the key to map cell lineages in a new reporter mouse strain driven by Wnt10aem1(cre/ERT2)Amc. The identification key facilitates rigorous and reproducible cell identification in prostate tissue sections and can be expanded to resolve additional cell types as new antibodies and other resources become available.


Subject(s)
Prostate/metabolism , Urethra/metabolism , Animals , Immunohistochemistry , Male , Mice , Prostate/cytology , Urethra/cytology
10.
J Extracell Vesicles ; 5: 29642, 2016.
Article in English | MEDLINE | ID: mdl-26837814

ABSTRACT

Non-invasive tests to identify age and early disease-associated pathology within the kidney are needed. Specific populations of urinary extracellular vesicles (EVs) could potentially be used for such a diagnostic test. Random urine samples were obtained from age- and sex-stratified living kidney donors before kidney donation. A biopsy of the donor kidney was obtained at the time of transplantation to identify nephron hypertrophy (larger glomerular volume, cortex per glomerulus and mean profile tubular area) and nephrosclerosis (% fibrosis, % glomerulosclerosis and arteriosclerosis). Renal parenchymal-derived EVs in cell-free urine were quantified by digital flow cytometry. The relationship between these EV populations and structural pathology on the kidney biopsy was assessed. Clinical characteristics of the kidney donors (n=138, age range: 20-70 years, 50% women) were within the normative range. Overall, urine from women contained more EVs than that from men. The number of exosomes, juxtaglomerular cells and podocyte marker-positive EVs decreased (p<0.05) with increasing age. There were fewer total EVs as well as EVs positive for mesangial cell, parietal cell, descending limb of Henle's loop (simple squamous epithelium), collecting tubule-intercalated cell and monocyte chemoattractant protein-1 markers (p<0.05) in persons with nephron hypertrophy. The number of EVs positive for intercellular adhesion molecule-1, juxtaglomerular cell, podocyte, parietal cell, proximal tubular epithelial cell, distal tubular epithelial cell and collecting duct cells were fewer (p<0.05) in persons with nephrosclerosis. EVs carrying markers of cells from the renal pelvis epithelium did not associate with any indices of nephron hypertrophy or nephrosclerosis. Therefore, specific populations of EVs derived from cells of the glomerulus and nephron associate with underlying kidney structural changes. Further validation of these findings in other cohorts is needed to determine their clinical utility.

SELECTION OF CITATIONS
SEARCH DETAIL
...