Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1157613, 2023.
Article in English | MEDLINE | ID: mdl-37533823

ABSTRACT

Introduction: Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods: Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results: To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion: These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.

2.
J Nat Prod ; 80(6): 1939-1943, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28525281

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a transcription factor activated by a vast array of natural and synthetic ligands. It plays a pivotal role in numerous physiological and pathological responses, such as cell proliferation and differentiation, induction of xenobiotic metabolizing enzymes, response to environmental toxins, and several others. In this study, we investigated the ability of some natural compounds (oxyprenylated ferulic acid and umbelliferone derivatives) and their semisynthetic analogues (e.g., differently substituted 7-alkoxycoumarins) to activate AhR, using a reporter luciferase assay. Among them, we found that 7-isopentenyloxycoumarin was the best AhR activator. Boropinic acid, 7-but-2'-enyloxycoumarin, 7-(2',2'-dimethyl-n-propyloxy)coumarin, 7-benzyloxycoumarin, and 7-(3'-hydroxymethyl-3'-methylallyloxy)coumarin were also active, although to a lesser extent. All the compounds were also analyzed for their ability to inhibit AhR activation, using a reference ligand, 6-formylindolo[3,2-b]carbazole. Data recorded in the present investigation pointed out the importance of a 3,3-dimethylallyloxy side chain attached to the coumarin ring core as a key moiety for AhR activation.


Subject(s)
Coumarins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Carcinoma, Hepatocellular/drug therapy , Cell Differentiation , Coumarins/chemistry , Ligands , Mice , Molecular Structure , Receptors, Aryl Hydrocarbon/chemistry , Signal Transduction
3.
Mediators Inflamm ; 2017: 1380615, 2017.
Article in English | MEDLINE | ID: mdl-28356656

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory, demyelinating disease of the CNS that mimics human multiple sclerosis (MS), and it is thought to be driven by Th1 and Th17 myelin-reactive cells. Although adaptive immunity is clearly pivotal in the pathogenesis of EAE, with an essential role of CD4+ T cells, little is known of early, innate responses in this experimental setting. CpG-rich oligodeoxynucleotides (ODNs), typically found in microbial genomes, are potent activators of TLR9 in plasmacytoid dendritic cells (pDCs). In this study, we compared the effects of two types of CpG, namely, type A and type B, on EAE. We found that treatment with CpG type A ODN (CpG-A), known to induce high amounts of IFN-α in pDCs, significantly reduced disease severity in EAE, relative to controls (12.63 ± 1.86 versus 23.49 ± 1.46, resp.; p = 0.001). Treatment also delayed onset of neurological deficits and reduced spinal cord demyelination, while increasing the percentage of splenic regulatory (Foxp3+ CD4+) T cells. CpG-A likewise reduced the levels of IL-17 and IFN-γ in the CNS. Mechanistic insight into those events showed that CpG-A promoted a regulatory phenotype in pDCs. Moreover, adoptive transfer of pDCs isolated from CpG-A-treated mice inhibited CNS inflammation and induced disease remission in acute-phase EAE. Our data thus identify a link between TLR9 activation by specific ligands and the induction of tolerance via innate immunity mechanisms.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunity, Innate , Oligodeoxyribonucleotides/metabolism , Animals , Dendritic Cells/cytology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Endotoxins/metabolism , Female , Inflammation , Ligands , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Phenotype , Signal Transduction , Spleen/metabolism , T-Lymphocytes, Regulatory/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...