Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 77: 213-219, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29655922

ABSTRACT

The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H2SO4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%.


Subject(s)
Electric Power Supplies , Metals , Recycling , Nickel , Poland , Zinc
2.
Sensors (Basel) ; 18(1)2018 Jan 06.
Article in English | MEDLINE | ID: mdl-29316643

ABSTRACT

To reduce energy consumption and improve residents' quality of life, "smart cities" should use not only modern technologies, but also the social innovations of the "Internet of Things" (IoT) era. This article attempts to solve transport problems in a smart city's office district by utilizing gamification that incentivizes the carpooling system. The goal of the devised system is to significantly reduce the number of cars, and, consequently, to alleviate traffic jams, as well as to curb pollution and energy consumption. A representative sample of the statistical population of people working in one of the biggest office hubs in Poland (the so-called "Mordor of Warsaw") was surveyed. The collected data were processed using spatial data mining methods, and the results were a set of parameters for the multi-agent system. This approach made it possible to run a series of simulations on a set of 100,000 agents and to select an effective gamification methodology that supports the carpooling process. The implementation of the proposed solutions (a "serious game" variation of urban games) would help to reduce the number of cars by several dozen percent, significantly reduce energy consumption, eliminate traffic jams, and increase the activity of the smart city residents.

SELECTION OF CITATIONS
SEARCH DETAIL
...