Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 32893, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27612206

ABSTRACT

In addition to brain injury stroke patients often suffer gastrointestinal complications. Neuroimmune interactions involving galectin-3, released from microglia in the brain, mediates the post-stroke pro-inflammatory response. We investigated possible consequences of stroke on the enteric nervous system and the involvement of galectin-3. We show that permanent middle cerebral artery occlusion (pMCAO) induces loss of enteric neurons in ileum and colon in galectin-3(+/+), but not in galectin-3(-/-), mice. In vitro we show that serum from galectin-3(+/+), but not from galectin-3(-/-), mice subjected to pMCAO, caused loss of C57BL/6J myenteric neurons, while myenteric neurons derived from TLR4(-/-) mice were unaffected. Further purified galectin-3 (10(-6) M) caused loss of cultured C57BL/6J myenteric neurons. Inhibitors of transforming growth factor ß-activated kinase 1 (TAK1) or AMP activated kinase (AMPK) counteracted both the purified galectin-3 and the galectin-3(+/+) pMCAO serum-induced loss in vitro. Combined we show that stroke (pMCAO) triggers central and peripheral galectin-3 release causing enteric neuronal loss through a TLR4 mediated mechanism involving TAK1 and AMPK. Galectin-3 is suggested a target for treatment of post-stroke complications.


Subject(s)
Galectin 3/metabolism , Infarction, Middle Cerebral Artery/metabolism , Microglia/metabolism , Neurons/physiology , Signal Transduction , Stroke/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Colon/innervation , Colon/physiopathology , Disease Models, Animal , Ileum/innervation , Ileum/physiopathology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/physiopathology , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stroke/complications , Stroke/etiology , Stroke/physiopathology , Toll-Like Receptor 4/metabolism
2.
Purinergic Signal ; 10(3): 455-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24510452

ABSTRACT

Gastrointestinal symptoms have a major impact on the quality of life and are becoming more prevalent in the western population. The enteric nervous system (ENS) is pivotal in regulating gastrointestinal functions. Purinergic neurotransmission conveys a range of short and long-term cellular effects. This study investigated the role of the ADP-sensitive P2Y13 receptor in lipid-induced enteric neuropathy. Littermate P2Y13 (+/+) and P2Y13 (-/-) mice were fed with either a normal diet (ND) or high-fat diet (HFD) for 6 months. The intestines were analysed for morphological changes as well as neuronal numbers and relative numbers of vasoactive intestinal peptide (VIP)- and neuronal nitric oxide synthase (nNOS)-containing neurons. Primary cultures of myenteric neurons from the small intestine of P2Y13 (+/+) or P2Y13 (-/-) mice were exposed to palmitic acid (PA), the P2Y13 receptor agonist 2meSADP and the antagonist MRS2211. Neuronal survival and relative number of VIP-containing neurons were analysed. In P2Y13 (+/+), but not in P2Y13 (-/-) mice, HFD caused a significant loss of myenteric neurons in both ileum and colon. In colon, the relative numbers of VIP-containing submucous neurons were significantly lower in the P2Y13 (-/-) mice compared with P2Y13 (+/+) mice. The relative numbers of nNOS-containing submucous colonic neurons increased in P2Y13 (+/+) HFD mice. HFD also caused ileal mucosal thinning in P2Y13 (+/+) and P2Y13 (-/-) mice, compared to ND fed mice. In vitro PA exposure caused loss of myenteric neurons from P2Y13 (+/+) mice while neurons from P2Y13 (-/-) mice were unaffected. Presence of MRS2211 prevented PA-induced neuronal loss in cultures from P2Y13 (+/+) mice. 2meSADP caused no change in survival of cultured neurons. P2Y13 receptor activation is of crucial importance in mediating the HFD- and PA-induced myenteric neuronal loss in mice. In addition, the results indicate a constitutive activation of enteric neuronal apoptosis by way of P2Y13 receptor stimulation.


Subject(s)
Diet, High-Fat/adverse effects , Enteric Nervous System/metabolism , Neurons/metabolism , Palmitic Acid/toxicity , Receptors, Purinergic P2/deficiency , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Myenteric Plexus/drug effects , Myenteric Plexus/metabolism , Myenteric Plexus/pathology , Neurons/drug effects , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...