Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(18)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34577257

ABSTRACT

In modern smarthomes, temperature regulation is achieved through a mix of traditional and emergent technologies including air conditioning, heating, intelligent utilization of the effects of sun, wind, and shade as well as using stored heat and cold. To achieve the desired comfort for the inhabitants while minimizing environmental impact and cost, the home controller must predict how its actions will impact the temperature and other environmental factors in various parts of the home. The question we are investigating in this paper is whether the temperature values in different rooms in a home are predictable based on readings from sensors in the home. We are also interested in whether increased accuracy can be achieved by adding sensors to capture the state of doors and windows of the given room and/or the whole home, and what type of machine learning algorithms can take advantage of the additional information. As experimentation on real-world homes is highly expensive, we use ScaledHome, a 1:12 scale, IoT-enabled model of a smart home for data acquisition. Our experiments show that while additional data can improve the accuracy of the prediction, the type of machine learning models needs to be carefully adapted to the number of data features available.


Subject(s)
Algorithms , Machine Learning , Air Conditioning , Heating , Temperature
2.
Sensors (Basel) ; 21(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067717

ABSTRACT

In recent years, significant work has been done in technological enhancements for mobility aids (smart walkers). However, most of this work does not cover the millions of people who have both mobility and visual impairments. In this paper, we design and study four different configurations of smart walkers that are specifically targeted to the needs of this population. We investigated different sensing technologies (ultrasound-based, infrared depth cameras and RGB cameras with advanced computer vision processing), software configurations, and user interface modalities (haptic and audio signal based). Our experiments show that there are several engineering choices that can be used in the design of such assistive devices. Furthermore, we found that a holistic evaluation of the end-to-end performance of the systems is necessary, as the quality of the user interface often has a larger impact on the overall performance than increases in the sensing accuracy beyond a certain point.


Subject(s)
Self-Help Devices , Walkers , Humans , Technology , User-Computer Interface
3.
Sensors (Basel) ; 18(10)2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30314370

ABSTRACT

Sensor nodes in underwater sensor networks may acquire data at a higher rate than their ability to communicate over underwater acoustic channels. Autonomous underwater vehicles may mitigate this mismatch by offloading high volumes of data from the sensor nodes and ferrying them to the sink. Such a mode of data transfer results in high latency. Occasionally, these networks need to report high priority events such as catastrophes or intrusions. In such a scenario the expectation is to have a minimal end-to-end delay for event reporting. Considering this, underwater vehicles should schedule their visits to the sensor nodes in a manner that aids efficient reporting of high-priority events. We propose the use of the Value of Information metric in order to improve the reporting of events in an underwater sensor network. The proposed approach classifies the recorded data in terms of its value and priority. The classified data is transmitted using a combination of acoustic and optical channels. We perform experiments with a binary event model, i.e., we classify the events into high-priority and low-priority events. We explore a couple of different path planning strategies for the autonomous underwater vehicle. Our results show that scheduling visits to sensor nodes, based on algorithms that address the value of information, improves the timely reporting of high priority data and enables the accumulation of larger value of information.

4.
BMC Bioinformatics ; 18(Suppl 8): 245, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28617220

ABSTRACT

BACKGROUND: Polychromatic flow cytometry is a popular technique that has wide usage in the medical sciences, especially for studying phenotypic properties of cells. The high-dimensionality of data generated by flow cytometry usually makes it difficult to visualize. The naive solution of simply plotting two-dimensional graphs for every combination of observables becomes impractical as the number of dimensions increases. A natural solution is to project the data from the original high dimensional space to a lower dimensional space while approximately preserving the overall relationship between the data points. The expert can then easily visualize and analyze this low-dimensional embedding of the original dataset. RESULTS: This paper describes a new method, SANJAY, for visualizing high-dimensional flow cytometry datasets. This technique uses a decision procedure to automatically synthesize two-dimensional and three-dimensional projections of the original high-dimensional data while trying to minimize distortion. We compare SANJAY to the popular multidimensional scaling (MDS) approach for visualization of small data sets drawn from a representative set of benchmarks, and our experiments show that SANJAY produces distortions that are 1.44 to 4.15 times smaller than those caused due to MDS. Our experimental results show that SANJAY also outperforms the Random Projections technique in terms of the distortions in the projections. CONCLUSIONS: We describe a new algorithmic technique that uses a symbolic decision procedure to automatically synthesize low-dimensional projections of flow cytometry data that typically have a high number of dimensions. Our algorithm is the first application, to our knowledge, of using automated theorem proving for automatically generating highly-accurate, low-dimensional visualizations of high-dimensional data.


Subject(s)
Algorithms , Computational Biology/methods , Flow Cytometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...