Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Geobiology ; 6(4): 376-93, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18564187

ABSTRACT

Well-developed hypersaline cyanobacterial mats from Guerrero Negro, Baja California Sur, sustain active methanogenesis in the presence of high rates of sulfate reduction. Very little is known about the diversity and distribution of the microorganisms responsible for methane production in these unique ecosystems. Applying a combination of 16S rRNA and metabolic gene surveys, fluorescence in situ hybridization, and lipid biomarker analysis, we characterized the diversity and spatial relationships of methanogens and other archaea in the mat incubation experiments stimulated with methanogenic substrates. The phylogenetic and chemotaxonomic diversity established within mat microcosms was compared with the archaeal diversity and lipid biomarker profiles associated with different depth horizons in the in situ mat. Both archaeal 16S rRNA and methyl coenzyme M reductase gene (mcrA) analysis revealed an enrichment of diverse methanogens belonging to the Methanosarcinales in response to trimethylamine addition. Corresponding with DNA-based detection methods, an increase in lipid biomarkers commonly synthesized by methanogenic archaea was observed, including archaeol and sn-2-hydroxyarchaeol polar lipids, and the free, irregular acyclic isoprenoids, 2,6,10,15,19-pentamethylicosene (PMI) and 2,6,11,15-tetramethylhexadecane (crocetane). Hydrogen enrichment of a novel putative archaeal polar C(30) isoprenoid, a dehydrosqualane, was also documented. Both DNA and lipid biomarker evidence indicate a shift in the dominant methanogenic genera corresponding with depth in the mat. Specifically, incubations of surface layers near the photic zone predominantly supported Methanolobus spp. and PMI, while Methanococcoides and hydroxyarchaeol were preferentially recovered from microcosms of unconsolidated sediments underlying the mat. Together, this work supports the existence of small but robust methylotrophic methanogen assemblages that are vertically stratified within the benthic hypersaline mat and can be distinguished by both their DNA signatures and unique isoprenoid biomarkers.


Subject(s)
Biodiversity , Methane/metabolism , Methanosarcinales/isolation & purification , Methanosarcinales/metabolism , Water Microbiology , Archaeal Proteins/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , In Situ Hybridization, Fluorescence , Lipids/analysis , Methanosarcinales/chemistry , Methanosarcinales/genetics , Mexico , Molecular Sequence Data , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Geobiology ; 6(4): 394-410, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18564188

ABSTRACT

This study has utilized the tools of lipid biomarker chemistry and molecular phylogenetic analyses to assess the archaeal contribution to diversity and abundance within a microbial mat and underlying sediment from a hypersaline lagoon in Baja California. Based on abundance of ether-linked isoprenoids, archaea made up from 1 to 4% of the cell numbers throughout the upper 100 mm of mat and sediment core. Below this depth archaeal lipid was two times more abundant than bacterial. Archaeol was the primary archaeal lipid in all layers. Relatively small amounts of caldarchaeol (dibiphytanyl glyceroltetraether) were present at most depths with phytanyl to biphytanyl molar ratios lowest (approximately 10 : 1) in the 4-17 mm and 100-130 mm horizons, and highest (132 : 1) in the surface 0-2 mm. Lipids with cyclic biphytanyl cores were only detected below 100 mm. A novel polar lipid containing a C(30) isoprenoid (squalane) moiety was isolated from the upper anoxic portion of the core and partially characterized. Hydrocarbon biomarker lipids included pentamethylicosane (2-10 mm) and crocetane (primarily below 10 mm). Archaeal molecular diversity varied somewhat with depth. With the exception of samples at 0-2 mm and 35-65 mm, Thermoplasmatales of marine benthic group D dominated clone libraries. A significant number of phylotypes representing the Crenarchaeota from marine benthic group B were generally present below 17 mm and dominated the 35-65 mm sample. Halobacteriaceae family made up 80% of the clone library of the surface 2 mm, and consisted primarily of sequences affiliated with the haloalkaliphilic Natronomonas pharaonis.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Biodiversity , DNA, Archaeal/genetics , Lipids/analysis , Water Microbiology , Archaea/chemistry , Archaea/genetics , Bacteria/isolation & purification , Biomarkers , DNA, Archaeal/chemistry , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Mexico , Molecular Sequence Data , Phylogeny , RNA, Archaeal/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
3.
FEMS Microbiol Ecol ; 52(3): 377-95, 2005 May 01.
Article in English | MEDLINE | ID: mdl-16329922

ABSTRACT

The creation of a mathematical simulation model of photosynthetic microbial mats is important to our understanding of key biogeochemical cycles that may have altered the atmospheres and lithospheres of early Earth. A model is presented here as a tool to integrate empirical results from research on hypersaline mats from Baja California Sur (BCS), Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. The first version of our model, presented here, calculates fluxes and cycling of O(2), sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via four major microbial guilds: cyanobacteria (CYA), sulfate reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized Monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in BCS (Mexico). Model O(2), sulfide, and DIC concentration profiles and fluxes compared well with data collected in the field mats. There were some model-predicted features of biogeochemical cycling not observed in our actual measurements. For instance, large influxes and effluxes of DIC across the MBGC mat boundary may reveal previously unrecognized, but real, in situ limits on rates of biogeochemical processes. Some of the short-term variation in field-collected mat O(2) was not predicted by MBGC. This suggests a need both for more model sensitivity to small environmental fluctuations for the incorporation of a photorespiration function into the model.


Subject(s)
Ecosystem , Geologic Sediments , Models, Biological , Photosynthesis , Sodium Chloride , Carbon/metabolism , Chromatiaceae/growth & development , Chromatiaceae/metabolism , Cyanobacteria/growth & development , Cyanobacteria/metabolism , Darkness , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Inorganic Chemicals/metabolism , Light , Oxygen/metabolism , Sulfides/metabolism , Sulfur-Reducing Bacteria/growth & development , Sulfur-Reducing Bacteria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL