Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Multimed Tools Appl ; : 1-44, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-37362724

ABSTRACT

The rapid development of machine learning has increased interest in the use of deep learning methods in medical research. Deep learning in the medical field is used in disease detection and classification problems in the clinical decision-making process. Large amounts of labeled datasets are often required to train deep neural networks; however, in the medical field, the lack of a sufficient number of images in datasets and the difficulties encountered during data collection are among the main problems. In this study, we propose MediNet, a new 10-class visual dataset consisting of Rontgen (X-ray), Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and Histopathological images such as calcaneal normal, calcaneal tumor, colon benign colon adenocarcinoma, brain normal, brain tumor, breast benign, breast malignant, chest normal, chest pneumonia. AlexNet, VGG19-BN, Inception V3, DenseNet 121, ResNet 101, EfficientNet B0, Nested-LSTM + CNN, and proposed RdiNet deep learning algorithms are used in the transfer learning for pre-training and classification application. Transfer learning aims to apply previously learned knowledge in a new task. Seven algorithms were trained with the MediNet dataset, and the models obtained from these algorithms, namely feature vectors, were recorded. Pre-training models were used for classification studies on chest X-ray images, diabetic retinopathy, and Covid-19 datasets with the transfer learning technique. In performance measurement, an accuracy of 94.84% was obtained in the traditional classification study for the InceptionV3 model in the classification study performed on the Chest X-Ray Images dataset, and the accuracy was increased 98.71% after the transfer learning technique was applied. In the Covid-19 dataset, the classification success of the DenseNet121 model before pre-trained was 88%, while the performance after the transfer application with MediNet was 92%. In the Diabetic retinopathy dataset, the classification success of the Nested-LSTM + CNN model before pre-trained was 79.35%, while the classification success was 81.52% after the transfer application with MediNet. The comparison of results obtained from experimental studies observed that the proposed method produced more successful results.

2.
J Digit Imaging ; 36(1): 306-325, 2023 02.
Article in English | MEDLINE | ID: mdl-36127531

ABSTRACT

Machine learning has been recently used especially in the medical field. In the diagnosis of serious diseases such as cancer, deep learning techniques can be used to reduce the workload of experts and to produce quick solutions. The nuclei found in the histopathology dataset are an essential parameter in disease detection. The nucleus segmentation was performed using the colorectal histology MNIST dataset for nucleus detection in this study. The graph theory, PSO, watershed, and random walker algorithms were used for the segmentation process. In addition, we present the 10-class MedCLNet visual dataset consisting of the NCT-CRC-HE-100 K dataset, LC25000 dataset, and GlaS dataset that can be used in transfer learning studies from deep learning techniques. The study proposes a transfer learning technique using the MedCLNet database. Deep neural networks pre-trained with the proposed transfer learning method were used in the classification with the colorectal histology MNIST dataset in the experimental process. DenseNet201, DenseNet169, InceptionResNetV2, InceptionV3, ResNet152V2, ResNet101V2, and Xception deep learning algorithms were used in transfer learning and the classification studies. The proposed approach was analyzed before and after transfer learning with different methods (DenseNet169 + SVM, DenseNet169 + GRU). In the performance measurement, using the colorectal histology MNIST dataset, 94.29% accuracy was obtained in the DenseNet169 model, which was initiated with random weights in the multi-classification study, and 95.00% accuracy after transfer learning was applied. In comparison with the results obtained from empirical studies, it was demonstrated that the proposed method produced satisfactory outcomes. The application is expected to provide a secondary evaluation for physicians in colon cancer detection and the segmentation.


Subject(s)
Colonic Neoplasms , Neural Networks, Computer , Humans , Algorithms , Machine Learning , Cell Nucleus
3.
Artif Intell Med ; 134: 102427, 2022 12.
Article in English | MEDLINE | ID: mdl-36462906

ABSTRACT

COVID-19 (SARS-CoV-2), which causes acute respiratory syndrome, is a contagious and deadly disease that has devastating effects on society and human life. COVID-19 can cause serious complications, especially in patients with pre-existing chronic health problems such as diabetes, hypertension, lung cancer, weakened immune systems, and the elderly. The most critical step in the fight against COVID-19 is the rapid diagnosis of infected patients. Computed Tomography (CT), chest X-ray (CXR), and RT-PCR diagnostic kits are frequently used to diagnose the disease. However, due to difficulties such as the inadequacy of RT-PCR test kits and false negative (FN) results in the early stages of the disease, the time-consuming examination of medical images obtained from CT and CXR imaging techniques by specialists/doctors, and the increasing workload on specialists, it is challenging to detect COVID-19. Therefore, researchers have suggested searching for new methods in COVID- 19 detection. In analysis studies with CT and CXR radiography images, it was determined that COVID-19-infected patients experienced abnormalities related to COVID-19. The anomalies observed here are the primary motivation for artificial intelligence researchers to develop COVID-19 detection applications with deep convolutional neural networks. Here, convolutional neural network-based deep learning algorithms from artificial intelligence technologies with high discrimination capabilities can be considered as an alternative approach in the disease detection process. This study proposes a deep convolutional neural network, COVID-DSNet, to diagnose typical pneumonia (bacterial, viral) and COVID-19 diseases from CT, CXR, hybrid CT + CXR images. In the multi-classification study with the CT dataset, 97.60 % accuracy and 97.60 % sensitivity values were obtained from the COVID-DSNet model, and 100 %, 96.30 %, and 96.58 % sensitivity values were obtained in the detection of typical, common pneumonia and COVID-19, respectively. The proposed model is an economical, practical deep learning network that data scientists can benefit from and develop. Although it is not a definitive solution in disease diagnosis, it may help experts as it produces successful results in detecting pneumonia and COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , COVID-19/diagnostic imaging , Artificial Intelligence , X-Rays , Tomography, X-Ray Computed , Neural Networks, Computer
4.
Med Biol Eng Comput ; 60(3): 643-662, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35028864

ABSTRACT

Cancer is among the common causes of death around the world. Skin cancer is one of the most lethal types of cancer. Early diagnosis and treatment are vital in skin cancer. In addition to traditional methods, method such as deep learning is frequently used to diagnose and classify the disease. Expert experience plays a major role in diagnosing skin cancer. Therefore, for more reliable results in the diagnosis of skin lesions, deep learning algorithms can help in the correct diagnosis. In this study, we propose InSiNet, a deep learning-based convolutional neural network to detect benign and malignant lesions. The performance of the method is tested on International Skin Imaging Collaboration HAM10000 images (ISIC 2018), ISIC 2019, and ISIC 2020, under the same conditions. The computation time and accuracy comparison analysis was performed between the proposed algorithm and other machine learning techniques (GoogleNet, DenseNet-201, ResNet152V2, EfficientNetB0, RBF-support vector machine, logistic regression, and random forest). The results show that the developed InSiNet architecture outperforms the other methods achieving an accuracy of 94.59%, 91.89%, and 90.54% in ISIC 2018, 2019, and 2020 datasets, respectively. Since the deep learning algorithms eliminate the human factor during diagnosis, they can give reliable results in addition to traditional methods.


Subject(s)
Skin Diseases , Skin Neoplasms , Algorithms , Dermoscopy/methods , Humans , Neural Networks, Computer , Skin , Skin Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...